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Preface

This volume contains the proceedings of the 10th IFIP Working Group 6.1 In-
ternational Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS 2008). The conference was part of the Third Federated con-
ferences on Distributed Computing Techniques (DisCoTec), together with the
10th International Conference on Coordination Models and Languages (COOR-
DINATION 2008) and the 8th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS 2008). We are grateful to Frank
Eliassen and Einar Broch Johnsen of the University of Oslo for the excellent
organization of this event in Olso, Norway, June 4–6, 2008.

The goal of the FMOODS conferences is to bring together researchers and
practitioners whose work encompasses three important and related fields:

– Formal methods
– Distributed systems
– Object-based technology

The 14 papers presented at FMOODS 2008 and included in this volume were
selected by the Program Committee among 35 submissions. Each submission
was reviewed by at least three Program Committee members. They all reflect
the scope of the conference and cover the following topics: semantics of object-
oriented programming; formal techniques for specification, analysis, and refine-
ment; model checking; theorem proving and deductive verification; type systems
and behavioral typing; formal methods for service-oriented computing; integra-
tion of quality of service requirements into formal models; formal approaches to
component-based design; and applications of formal methods.

The invited speaker of FMOODS 2008, Andrew Myers from Cornell Univer-
sity (USA), presented his work on guiding distributed systems synthesis with
language-based security policies. In his talk he described a higher-level approach
to programming secure systems. Andrew detailed two applications of his ap-
proach: building secure Web applications using partitioning between clients and
servers, and building more general secure systems by synthesizing fault-tolerance
protocols for availability.

Finally, we thank all authors for the high quality of their contributions, and
the Program Committee members and the external reviewers for their help in
selecting the papers for this volume.

The use of the EasyChair conference system was very helpful for organizing
the technical program and proceedings of FMOODS 2008. Thanks to Nathalie
Bellesso for her help in preparing the proceedings.

June 2008 Gilles Barthe
Frank de Boer
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Ravinder Shankesi, and Mahesh Viswanathan

Behavioural Theory at Work: Program Transformations in a
Service-Centred Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Guiding Distributed Systems Synthesis with

Language-Based Security Policies

Andrew Myers

Cornell University, USA

Abstract. The distributed information systems we use every day are
becoming more complex and interconnected. Can we trust them with our
information? Currently there is no good way to check that distributed
software uses information securely, even if we have the source code. Many
mechanisms are available, but are error-prone: for example, encryption,
various cryptographic protocols, access control, and replication. But it
is hard to know when we are using these mechanisms in a way that
correctly enforces application security requirements.

This talk describes a higher-level approach to programming secure
systems. Instead of using security mechanisms directly, the program-
ming language incorporates explicit security policies specifying the con-
fidentiality, integrity, and availability of information. The compiler then
automatically transforms the source code to run securely on the avail-
able host machines, and uses a variety of security mechanisms in order to
satisfy security policies. The result is systems that are secure by construc-
tion. We look at two applications of this approach: building secure web
applications using partitioning beween clients and servers, and building
more general secure systems by synthesizing fault-tolerance protocols for
availability.

Joint work with Steve Chong, Jed Liu, Nate Nystrom, Xin Qi, K.
Vikram, Steve Zdancewic, Lantian Zheng, and Xin Zheng.

G. Barthe and F. de Boer (Eds.): FMOODS 2008, LNCS 5051, p. 1, 2008.
c© IFIP International Federation for Information Processing 2008



Termination Analysis of Java Bytecode

Elvira Albert1, Puri Arenas1, Michael Codish2,
Samir Genaim3, Germán Puebla3, and Damiano Zanardini3

1 DSIC, Complutense University of Madrid (UCM), Spain
2 CS, Ben-Gurion University of the Negev, Israel

3 CLIP, Technical University of Madrid (UPM), Spain

Abstract. Termination analysis has received considerable attention,
traditionally in the context of declarative programming, and recently
also for imperative languages. In existing approaches, termination is per-
formed on source programs. However, there are many situations, includ-
ing mobile code, where only the compiled code is available. In this work
we present an automatic termination analysis for sequential Java Byte-
code programs. Such analysis presents all of the challenges of analyzing
a low-level language as well as those introduced by object-oriented lan-
guages. Interestingly, given a bytecode program, we produce a constraint
logic program, CLP, whose termination entails termination of the byte-
code program. This allows applying the large body of work in termination
of CLP programs to termination of Java bytecode. A prototype analyzer
is described and initial experimentation is reported.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed, primarily for less-widely used programming languages.
These include analyzers for term rewrite systems [15], and logic and functional
languages [18,10,17]. Termination-proving techniques are also emerging in the
imperative paradigm [6,11,15], even for dealing with large industrial code [11].

Static analysis of Java ByteCode (JBC for short) has received considerable
attention lately [25,23,24,22,1]. The present paper presents a static analysis for
sequential JBC which is, to the best of our knowledge, the first approach to
proving termination. Bytecode is a low-level representation of a program, de-
signed to be executed by a virtual machine rather than by dedicated hardware.
As such, it is usually higher level than actual machine code, and independent of

G. Barthe and F. de Boer (Eds.): FMOODS 2008, LNCS 5051, pp. 2–18, 2008.
c© IFIP International Federation for Information Processing 2008
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the specific hardware. This, together with its security features, makes JBC [19]
the chosen language for many mobile code applications. In this context, anal-
ysis of JBC programs may enable performing a certain degree of static (i.e.,
before execution) verification on program components obtained from untrusted
providers. Proof-Carrying Code [20] is a promising approach in this area: mo-
bile code is equipped with certain verifiable evidence which allows deployers to
independently verify properties of interest about the code. Termination analysis
is also important since the verification of functional program properties is often
split into separately proving partial correctness and termination.

Object-oriented languages in general, and their low-level (bytecode) counter-
parts in particular, present new challenges to termination analyzers: (1) loops
originate from different sources, such as conditional and unconditional jumps,
method calls, or even exceptions; (2) size measures must consider primitive
types, user defined objects, and arrays; and (3) tracking data is more difficult,
as data can be stored in variables, operand stack elements or heap locations.

Analyzing JBC is a necessity in many situations, including mobile code, where
the user only has access to compiled code. Furthermore, it can be argued that
analyzing low-level programs can have several advantages over analyzing their
high-level (Java) counterparts. One advantage is that low-level languages typi-
cally remain stable, as their high-level counterparts continue to evolve — ana-
lyzers for bytecode programs need not be enhanced each time a new language
construct is introduced. Another advantage is that analyzing low-level code nar-
rows the gap between what is verified and what is actually executed. This is
relevant, for example, in safety critical applications.

In this paper we take a semantic-based approach to termination analysis,
based on two steps. The first step transforms the bytecode into a rule-based
program where all loops and all variables are represented uniformly, and which is
semantically equivalent to the bytecode. This rule-based representation is based
on previous work [1] in cost analysis, and is presented in Sec. 2. In the second step
(Sec. 3), we adapt directly to the rule-based program standard techniques which
usually prove termination of high-level languages. Sec. 4 reports on our prototype
implementation and validates it by proving termination of a series of object-
oriented benchmarks, containing recursion, nested loops and data structures
such as trees and arrays. Conclusions and related work are presented in Sec. 5.

2 Java Bytecode and Its Rule-Based Representation

We consider a subset of the Java Virtual Machine (JVM) language which han-
dles integers and object creation and manipulation (by accessing fields and call-
ing methods). For simplicity, exceptions, arrays, interfaces, and primitive types
besides integers are omitted. Yet, these features can be easily handled within our
setting: all of them are implemented in our prototype and included in benchmarks
in Table 1. A full description of the JVM [19] is out of the scope of this paper.

A sequential JBC program consists of a set of class files, one for each class,
partially ordered with respect to the subclass relation �. A class file contains
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information about its name, the class it extends, and the fields and methods it
defines. Each method has a unique signature m from which we can obtain the
class, denoted class(m), where the method is defined, the name of the method,
and its signature. When it is clear from the context, we ignore the class and the
types parts of the signature. The bytecode associated with m is a sequence of
bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruc-
tion, and pci is its address. The local variables of a method are denoted by
〈l0, . . . , ln−1〉, of which the first k≤n are the formal parameters, and l0 corre-
sponds to the this reference (unlike Java, in JBC, the this reference is explicit).
Similarly, each field f has a unique signature, from which we can obtain its name
and the name of the class it belongs to. The bytecode instructions we consider
include:

bcInst ::= istore v | astore v | iload v | aload v | iconst i | aconst null
| iadd | isub | iinc v n | imul | idiv
| if φ pc | goto pc | ireturn | areturn
| new c | invokevirtual m | invokespecial m | getfield f | putfield f

where c is a class, φ is a comparison condition on numbers (ne, le, icmpgt)
or references (null, nonnull), v is a local variable, i is an integer, and pc is an
instruction address. Briefly, instructions are: (row 1) stack operations referring
to constants and local variables; (row 2) arithmetic operations; (row 3) jumps
and method return; and (row 4) object-oriented instructions. All instructions
in row 3, together with invokevirtual, are branching (the others are sequential).
For simplicity, we will assume all methods to return a value. Fig. 1 depicts the
bytecode for the iterative method fact , where indexes 0, . . . , 3 stands for local
variables this , n, ft and i respectively. next(pc) is the address immediately after
the program counter pc. As instructions have different sizes, addresses do not
always increase by one (e.g., next(6)=9).

We assume an operational semantics which is a subset of the JVM specifica-
tion [19]. The execution environment of a bytecode program consists of a heap h
and a stack A of activation records. Each activation record contains a program
counter, a local operand stack, and local variables. The heap contains all objects
(and arrays) allocated in the memory. Each method invocation generates a new
activation record according to its signature. Different activation records do not
share information, but may contain references to the same object in the heap.

2.1 From Bytecode to Control Flow Graphs

The JVM language is unstructured. It allows conditional and unconditional
jumps as well as other implicit sources of branching, such as virtual method
invocation and exception throwing. The notion of a Control Flow Graph (CFG
for short) is a well-known instrument which facilitates reasoning about programs
in unstructured languages. A CFG is similar to the older notion of a flow chart,
but CFGs include a concept of “call to” and “return from”. Methods in the byte-
code program are represented as CFGs, and calls from one method to another
correspond to calls between these graphs. In order to build CFGs, the first step
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int fact(int);
0 : iconst 1

1 : istore 2
2 : iconst 1
3 : istore 3
4 : iload 3

5 : iload 1
6 : if icmpgt 19
9 : iload 2

10 : iload 3
11 : imul
12 : istore 2
13 : iinc 3, 1
16 : goto 4
19 : iload 2

20 : ireturn

int fact(int n){
int ft=1;
for (int i=1; i<=n; i++) ft=ft*i;
return ft;

}

20 : ireturn 6 : if icmpgt 19

i > n

fact2

4 : iload 3
5 : iload 119 : iload 2

fact4

class DoSum 0 : iconst 1
1 : istore 2
2 : iconst 1
3 : istore 3 fact3

9 : iload 2
10 : iload 3

12 : istore 2
13 : iinc 3, 1
16 : goto 4

i ≤ n

fact1

11 : imul

Fig. 1. A JBC method (left) with its corresponding source (center) and its CFG (right)

is to partition a sequence of bytecode instructions into a set of maximal sub-
sequences, or basic blocks, of instructions which execute sequentially, i.e., with-
out branching nor jumping. Given a bytecode instruction pc:b, we say that pc′:b′

is a predecessor of pc:bc if one of the following conditions holds: (1) b′=goto pc,
(2) b′=if φ pc, (3) next(pc′)=pc.

Definition 1 (partition to basic blocks). Given a method m and its se-
quence of bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, a partition into basic blocks
m1, . . . , mk takes the form

pci1 :bi1 , . . . , pcf1 :bf1
︸ ︷︷ ︸

m1

, pci2 :bi2 . . . , pcf2 :bf2
︸ ︷︷ ︸

m2

, . . . pcik
:bik

. . . , pcfk
:bfk

︸ ︷︷ ︸

mk

where i1=1, fk=n and

1. the number of basic blocks (i.e. k) is minimal;
2. in each basic block mj, only the instruction bfj can be branching; and
3. in each basic block mj, only the instruction bij can have more than one

predecessor.

A partition to basic blocks can be obtained as follows: the first sequence m1
starts at pc1 and ends at pcf1=min(pce1

, pcs1
), where pce1

is the address of
the first branching instruction after pc1, and pcs1

is the first address after pc1
s.t. the instruction at address next(pcs1

) has more than one predecessor. The
sequence m2 is computed similarly starting at pci2=next(pcf1

), etc. Note that
this partition can be computed in two passes: the first computes the predecessors,
and the second defines the beginning and end of each sub-sequence.
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Example 1. The JBC fact method on the left of Fig. 1 is partitioned into four
basic blocks. The initial addresses (pcix

) of these blocks are shown within boxes.
Each block is labeled by fact id where id is a unique block identifier. A directed
edge indicates a control flow from the last instruction in the source node to the
first instruction in the destination node. Edges may be labeled by a guard which
states conditions under which the edge may be traversed during execution. �

In invokevirtual, due to dynamic dispatching, the actual method to be called may
not be known at compile time. To facilitate termination analysis, we capture this
information and introduce it explicitly in the CFG. This is done by adding new
blocks, the implicit basic blocks, containing calls to actual methods which might
be called at runtime. Moreover, access to these blocks is guarded by mutually
exclusive conditions on the runtime class of the calling object.

Definition 2 (implicit basic block). Let m be a method which contains an
instruction of the form pc:b, where b=invokevirtual m′. Let M be a superset
of the methods (signatures) that might actually be called at runtime when ex-
ecuting pc:b. The implicit basic block for m′′∈M is mpc:c, where c=class(m ′′)
if class(m ′′)�class(m ′), otherwise c=class(m ′). The block includes the single
special instruction invoke(m′). The guard of mpc:c is mg

pc:c=instanceof(n, c, D),
where D={class(m ′′) | m ′′∈M , class(m ′′)≺c}, and n is the arity of m′.

It can be seen that m is used to denote both methods and blocks in order to make
them globally unique. The above condition instanceof(n, c, D) states that the
(n+1)th stack element (from the top) is an instance of class c and not an instance
of any class in D. Computing the set M in the above definition can be statically
done by considering the class hierarchy and the method signature, which is
clearly a safe approximation of the set of the actual methods that might be called
at runtime when executing b. However, in some cases this might result in a much
larger set than the actual one, which in turn affects the precision and performance
of the corresponding static analysis. In such cases, class analysis [25] is usually
applied to reduce this set as it gives information about the possible runtime
classes of the object whose method is being called. Note that the instruction
invoke(m′) does not appear in the original bytecode, but it is instrumental to
define our rule-based representation in Sec. 2.2. For example, consider the CFG
in Fig. 2, which corresponds to the recursive method doSum and calls fact . This
CFG contains two implicit blocks labeled doSum11:DoSum and doSum19:DoSum .

The following definition formalizes the notion of a CFG for a method. Al-
though the invokespecial bytecode instruction always corresponds to only one
possible method call which can be identified from the symbolic method reference,
in order to simplify the presentation, we treat it as invokevirtual, and associate
it to a single implicit basic block with the true guard. Note that every bytecode
instruction belongs to exactly one basic block. By BlockId(pc, m)=i we denote
the fact that the instruction pc in m belongs to block mi. In addition, for a given
invokevirtual instruction pc:b in a method m, we use Mm

pc and Gm
pc to denote the

set of its implicit basic blocks and their corresponding guards respectively.
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int doSum(List x);
0 : aload 1
1 : ifnonnull 6
4 : iconst 0
5 : ireturn
6 : aload 0
7 : aload 1
8 : getfield List.data
11 : invokevirtual fact
14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum
22 : iadd
23 : ireturn

1 : ifnonnull 6

doSum1 class DoSum

x �= null

6 : aload 0

doSum3

x=null

doSum2

4 : iconst 0
5 : ireturn

0 : aload 1

7 : aload 1
8 : getfield List.data
11 : invokevirtual fact

14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum

22 : iadd
23 : ireturn

(1) doSum11:DoSum

doSum4

(2) doSum19:DoSum

doSum5

invoke(doSum)

invoke(fact)

instanceof(1, DoSum, {})
instanceof(1, DoSum, {})

(G1)
(G2)

int doSum(List x) {
if (x==null) return 0;
else return fact(x.data)+ doSum(x.next);

}

Fig. 2. The Control Flow Graph of the doSum example

Definition 3 (CFG). The control flow graph for a method m is a graph G =
〈N , E〉. Nodes N consist of:

(a) basic blocks m1, . . . , mk of m; and
(b) implicit basic blocks corresponding to calls to methods.

Edges in E take the form 〈mi → mj , conditionij〉 where mi and mj are, resp.,
the source and destination node, and conditionij is the Boolean condition la-
beling this transition. The set of edges is constructed, by considering each node
mi∈N which corresponds to a (non-implicit) basic block, whose last instruction
is denoted as pc:b, as follows:

1. if b=goto pc′ and j=BlockId(pc′, m) then we add 〈mi → mj , true〉 to E;
2. if b=if φ pc′, j=BlockId (pc′, m) and i′=BlockId(next(pc), m) then we add

both 〈mi → mj , φ〉 and 〈mi → mi′ , ¬φ〉 to E;
3. if b∈{invokevirtual m′, invokespecial m′}, and i′=BlockId(next(pc), m) then,

for all d∈Mm
pc and its corresponding gm

pc:d∈Gm
pc, we add 〈mi → mpc:d, g

m
pc:d〉

and 〈mpc:d → mi′ , true〉 to E;
4. otherwise, if j=BlockId(next(pc), m) then we add 〈mi → mj , true〉 to E.
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For conciseness, when a branching instruction b involving implicit blocks leads to
a single successor block, we include the corresponding invoke instruction within
the basic block b belongs to. For instance, consider that the classes DoSum
and List are not extended by any other class. In this case, the branching in-
structions 11 and 19 have a single continuation. Their associated implicit blocks
marked with (1) and (2) in Fig. 2 are, thus, just included within the basic block
doSum3. G1 and G2 at the bottom indicate the guards which should label the
edge.

2.2 Rule-Based Representation

The CFG, while having advantages, is not optimal for our purposes. Therefore,
we introduce a Rule-Based Representation (RBR) on which we demonstrate our
approach to termination analysis. This RBR is based on a recursive representa-
tion presented in previous work [1], where it has been used for cost analysis.

The main advantages of the RBR are that: (1) all iterative constructs (loops)
fit in the same setting, independently of whether they originate from recursive
calls or iterative loops (conditional and unconditional jumps); and (2) all vari-
ables in the local scope of the method a block corresponds to (formal parameters,
local variables, and stack values) are represented uniformly as explicit arguments.
This is possible as in JBC the height of the operand stack at each program point
is statically known. We prefer to use this rule-based representation, rather than
other existing ones (e.g., BoogiePL [13] or those in Soot [26]), as in a simple
post-processing phase we can eliminate almost all stack variables, which results,
as we will see in Sec. 3.1, in a more efficient analysis.

A Rule-Based Program (RBP for short) defines a set of procedures, each of them
defined by one or more rules. As we will see later, each block in the CFG gen-
erates one or two procedures. Each rule has the form head(x̄ , ȳ):=guard , instr ,
cont where head is the name of the procedure the rule belongs to, x̄ and ȳ indi-
cate sequences 〈x1, . . . , xn〉, n>0 (resp. 〈y1, . . . , yk〉, k>0) of input (resp. output)
arguments, guard is of the form guard(φ), where φ is a Boolean condition on the
variables in x̄, instr is a sequence of (decorated) bytecode instructions, and cont
indicates a possible call to another procedure representing the continuation of this
procedure. In principle, x̄ includes the method’s local variables and the stack el-
ements at the beginning of the block. In most cases, ȳ only needs to store the re-
turn value of the method, which we denote by r. For simplicity, guards of the form
guard(true) are omitted. When a procedure p is defined by means of several rules,
the corresponding guards must cover all cases and be pairwise exclusive.

Decorating Bytecode Instructions. In order to make all arguments explicit, each
bytecode instruction in instr is decorated explicitly with the (local and stack)
variables it operates on. We denote by t=stack height(pc, m) the height of the
stack immediately before the program point pc in a method m. Function dec in
the following table shows how to decorate some selected instructions, where n is
the number of arguments of m.
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pc:b dec(b)
iconst i iconst(i, st+1)
istore v istore(st, �v)
iload v iload (lv, st+1)
new c new(c, st+1)
ireturn ireturn(st, r)

pc:b dec(b)
iadd iadd(st−1, st, st−1)
invoke(m) m(〈st−n, . . . , st〉, 〈st−n〉)
getfield f getfield(f, st, st)
putfield f putfield(f, st−1, st, st−1)
guard(icmpgt) guard(icmpgt(st−1, st))

Guards are translated according to the bytecode instruction they come from.
Note that branching instructions do not need to appear in the RBR, since
their effect is already captured by the branching at the RBR level and since
invoke instructions are replaced by calls to the entry rule of the corresponding
method.

Definition 4 (RBR). Let m be a method with l0, . . ., ln−1 local variables, of
which l0, . . . , lk−1 are the formal parameters together with the this reference l0
(k ≤ n), and let 〈N , E〉 be its CFG. The rule-based representation of 〈N , E〉 is
rules(〈N , E〉) = entry(〈N , E〉)

⋃

mp∈N translate(mp, 〈N , E〉), with:

entry(〈N , E〉)=
{m(〈�0, . . . , �k−1〉, 〈r〉):=init local vars(〈lk, . . . , ln−1〉), m1 (〈�0, . . . , �n−1〉, 〈r〉)}

where the call init local vars initializes the local variables of the method, and

translate(mp, 〈N , E〉) =
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m.} � ∃〈mp �→ , 〉∈E

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m, mc

p(〈l̄, s0, . . . , spo−1〉, 〈r〉).}
⋃

{mc
p(〈l̄, s0, . . . , spo−1〉, 〈r〉):=g,mq(〈l̄, s0, . . . , sqi−1〉, 〈r〉).

| 〈mp → mq, φq〉 ∈ E ∧ g=dec(φq)}
otherwise

In the above formula, pi (resp., po) denotes the height of the operand stack of m
at the entry (resp., exit) of mp. Also, qi is the height of the stack at the entry
of mq, and TBC p

m is the decorated bytecode for mp. We use “ ” to indicate that
the value at the corresponding position is not relevant.

The function translate(mp, 〈N , E〉) is defined by cases. The first case is applied
when mp is a sink node with no out-edges. Otherwise, the second rule introduces
an additional procedure mc

p (c is for continuation), which is defined by as many
rules as there are out-edges for mp. These rules capture the different alterna-
tives which execution can follow from mp. We will unfold calls to mc

p whenever
it is deterministic (mp has a single out-edge). This results in mp calling mq

directly.

Example 2. The RBR of the CFG in Fig. 1 consists of the following rules where
local variables have the same name as in the source code and o is the this
object:
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fact(〈o, n〉, 〈r〉) := init local vars(〈ft, i〉), fact1 (〈o, n, ft, i〉, 〈r〉).
fact1 (〈o, n, ft, i〉, 〈r〉) := iconst(1, s0), istore(s0, ft), iconst(1, s0),

istore(s0, i), fact2 (〈o, n, ft, i〉, 〈r〉).
fact2 (〈o, n, ft, i〉, 〈r〉) := iload(i, s0), iload(n, s1),

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmpgt(s0, s1)), fact4 (〈o, n, ft, i〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmple(s0, s1)), fact3 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), iload(i, s1), imul(s0, s1, s0),
istore(s0, ft), iinc(i, 1), fact2 (〈o, n, ft, i〉, 〈r〉).

fact4 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), ireturn(s0, r).

The first rule corresponds to the entry. Block fact4 is a sink block. Blocks fact1
and fact3 have a single out-edge and we have unfolded the continuation. Finally,
block fact2 has two out-edges and needs the procedure factc

2. The RBR from the
CFG of doSum in Fig. 2 is (doSum3 merges several blocks with one out-edge):

doSum (〈o, x〉, 〈r〉) := init local vars(〈〉), doSum1 (〈o, x〉, 〈r〉).
doSum1(〈o, x〉, 〈r〉) := aload(x, s0), doSumc

1(〈o, x, s0〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(nonnull(s0)), doSum3 (〈o, x〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(null(s0)), doSum2 (〈o, x〉, 〈r〉).
doSum2(〈o, x〉, 〈r〉) := iconst(0, s0), ireturn(s0, r).
doSum3(〈o, x〉, 〈r〉) := aload(o, s0), aload(x, s1), getfield(List.data, s1, s1),

fact(〈s0, s1〉, 〈s0〉), aload(o, s1), aload(x, s2),
getfield(List.next, s2, s2), doSum(〈s1, s2〉, 〈s1〉),
iadd(s0, s1, s0), ireturn(s0, r).

We can see that a call to a different method, fact , occurs in doSum3. This shows
that our RBR allows simultaneously handling the two CFGs in our example. �

Rule-based Programs vs JBC Programs. Given a JBC program P , Pr denotes
the RBP obtained from P . Note that, it is trivial to define an interpreter (or ab-
stract machine) which can execute any Pr and obtain the same return value and
termination behaviour as a JVM does for P . RBPs, in spite of their declarative
appearance, are in fact imperative programs. As in the JVM, an interpreter for
RBPs needs, in addition to a stack for activation records, a global heap. These
activation records differ from those in the JVM in that the operand stack is no
longer needed (as stack elements are explicit) and in that the scope of variables
is no longer associated to methods but rather to rules. In RBPs all rules are
treated uniformly, regardless of the method they originate from, so that method
borders are somewhat blurred. As in the JVM, call-by-value is used for passing
arguments in calls.

3 Proving Termination

This section describes how to prove termination of a JBC program given its
RBR. The approach consists of two steps. In the first, we abstract the RBR rules
by replacing all program data by their corresponding size, and replacing calls
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corresponding to bytecode instructions by size constraints on the values their
variables can take. This step results in a Constraint Logic Program (CLP) [16]
over integers, where, for any bytecode trace t, there exists a CLP trace t′ whose
states are abstractions of t states. In particular, every infinite (non terminating)
bytecode trace has a corresponding infinite CLP trace, so that termination of the
CLP program implies termination of the bytecode program. Note that, unlike in
bytecode traces which are always deterministic, the execution of a CLP program
can be non-deterministic, due to the precision loss inherent to the abstraction.

In the second step, we apply techniques for proving termination of CLP pro-
grams [9], which consist of: (1) analyzing the rules for each method to infer input-
output size relations between the method input and output variables; (2) using
the input-output size relations for the methods in the program, we infer a set of
abstract direct calls-to pairs which describe, in terms of size-change, all possible
calls from one procedure to another; and (3) given this set of abstract direct
calls-to pairs, we compute a set of all possible calls-to pairs (direct and indi-
rect), describing all transitions from one procedure to another. Then we focus
on the pairs which describe loops, and try to identify ranking functions which
guarantee the termination of each loop and thus of the original program.

3.1 Abstracting the Rules

As mentioned above, rule abstraction replaces data by the size of data, and
focuses on relations between data size. For integers, their size is just their in-
teger value [12]. For references, we take their size to be their path-length [24],
i.e., the length of the maximal path reachable from the reference. Then, bytecode
instructions are replaced by constraints on sizes taking into account a Static Sin-
gle Assignment (SSA) transformation. SSA is needed because variables in CLP
programs cannot be assigned more than one value. For example, an instruction
iadd(s0, s1, s0) will be abstracted to s′0=s1+s0 where s′0 refers to the value of s0
after executing the instruction. Also, the bytecode getfield(f, s0, s0) is abstracted
to s0>s′0 if it can be determined that s0 (before executing the instruction) does
not reference a cyclic data-structure, since the length of the longest-path reach-
able from s0 is larger than the length of the longest path reachable from s′0.

bytecode b abstract bytecode bα ρi+1

iload(lv, sj) s′j=ρi(lv) ρi[sj �→s′j ]
iadd(sj , sj+1, sj) s′j=ρi(sj)+ρi(sj+1) ρi[sj �→s′j ]
guard(icmpgt(sj , sj+1)) ρi(sj)>ρi(sj+1) ρi

getfield(f, sj , sj) if f is of ref. type: ρi(sj)>s′j if sj is not cyclic ρi[sj �→ s′j ]
otherwise ρi(sj) ≥ s′j . If f is not of ref. type: true

putfield(f, sj , sj+1) if sj and sj+1 do not share, s′k≤ρi(sk)+ρi(sj+1) ρi[sk �→ s′k]
s.t f is of ref. type for any sk that shares with sj , otherwise true.

To implement the SSA transformation we maintain a mapping ρ of variable
names (as they appear in the rule) to new variable names (constraint vari-
ables). Such a mapping is referred to as a renaming. We let ρ[x 	→ y] denote the
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modification of the renaming ρ such that it maps x to the new variable y. We
denote by ρ[x̄ 	→ ȳ] the mapping of each element in x̄ to a corresponding one
in ȳ.

Definition 5 (abstract compilation). Let r ≡ p(x, y) := b1, . . . , bn be a rule.
Let ρi be a renaming associated with the point before each bi and let ρ1 be the
identity renaming (on the variables in the rule). The abstraction of r is denoted
r

α and takes the form p(x, y′) := bα
1 , . . . , bα

n where bα
i are computed iteratively

from left to right as follows:

1. if bi is a bytecode instruction or a guard, then bα
i and ρi+1 are obtained from

a predefined lookup table similar to the one above.
2. if bi is a call to a procedure q(w, z), then the abstraction bα

i is q(w′, z′) where
each w′k∈w′ is ρi(wk), variables z′ are fresh, and ρi+1=ρi[z 	→ z′, u 	→ u′]
where u′ are also fresh variables and u is the set of all variables in w which
reference data-structures that can be modified when executing q and those
that share (i.e., might have common regions in the heap) with them.

3. at the end we define each y′i ∈ y′ to be the constrained variable ρn+1(yi).

In addition, all reference variables are (implicitly) assumed to be non-negative.

Note that in point 2 above, the set of variables such that the data-structures
they point to may be modified during the execution of q can be approximated by
applying constancy analysis [14], which aims at detecting the method arguments
that remain constant during execution, and sharing analysis [23] which aims at
detecting reference variables that might have common regions on the heap. Also,
the non-cyclicity condition required for the abstraction of getfield can be verified
by non-cyclicity analysis [22]. In what follows, for simplicity, we assume that
abstract rules are normalized to the form p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj , yj)
where ϕ is the conjunction of the (linear) size constraints introduced in the
abstraction and each pi(xi, yi) is a call to a procedure (i.e., block or method).

Example 3. Recall the following rule from Ex. 2 (on the left) and its abstraction
(on the right) where the renamings are indicated as comments.

fact3 (〈o, n, ft, i〉, 〈r〉) :=
iload(ft, s0),
iload(i, s1),
imul(s0, s1, s0),
istore(s0, ft),
iinc(i, 1),
fact2 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r′〉) := % ρ1 = id
s′0 = ft, % ρ2 = ρ1[s0 	→ s′0]
s′1 = i, % ρ3 = ρ2[s1 	→ s′1]
true, % ρ4 = ρ3[s0 	→ s′′0 ]
ft′ = s′′0 , % ρ5 = ρ4[ft 	→ ft′]
i′ = i + 1, % ρ6 = ρ5[i 	→ i′]
fact2 (〈o, n, ft′, i′〉, 〈r′〉). % ρ7 = ρ6[r 	→ r′]

Note that imul is abstracted to true, since it imposes a non-linear constraint. �

3.2 Input Output Size-Relations

We consider the abstract rules obtained in the previous step to infer an abstrac-
tion (w.r.t. size) of the input-output relation of the program blocks. Concretely,
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we infer input-output size relations of the form p(x, y) ← ϕ, where ϕ is a con-
straint describing the relation between the sizes of the input x and the output
y upon exit from p. This information is needed since output of one call may
be input to another call. E.g., consider the following contrived abstract rule
p(〈x〉, 〈r〉):={x>0,x>z}, q(〈z〉, 〈y〉), p(〈y〉, 〈r〉). To prove termination, it is cru-
cial to know the relation between x in the head and y in the recursive call to p.
This requires knowledge about the input-output size relations for q(〈z〉, 〈y〉). As-
suming this to be q(〈z〉, 〈y〉) ← z>y, we can infer x>y. Since abstract programs
are CLP programs, inferring relations can rely on standard techniques [4].

Computing an approximation of input-output size relation requires a global
fixpoint. In practice, we can often take a trivial over-approximation where for all
rules there is no information, namely, p(x, y) ← true. This can prove termination
of many programs, and results in a more efficient implementation. It is not
enough in cases as the above abstract rule, which however, in our experience,
often does not occur in imperative programs.

3.3 Call-to Pairs

Consider again the abstract rule from Ex. 3 which (ignoring the output variable)
is of the form fact3 (x̄) := ϕ, fact2 (z̄). It means that whenever execution reaches
a call to fact3 (x̄) there will be a subsequent call to fact2 (z̄) and the constraint ϕ
holds. In general, subsequent calls may arise also from rules which are not binary.
Given an abstract rule of the form p0 := ϕ, p1, . . . , pn, a call to p0 may lead to
a call to pi, 1≤i≤n. Given the input-output size relations for the individual
calls p1, . . . , pi−1, we can characterize the constraint for a transition between the
subsequent calls p0 and pi by adding these relations to ϕ. We denote a pair of
such subsequent calls by 〈p0(x) � pi(y), ϕi〉 and call it a calls-to pair.

Definition 6 (direct calls-to pairs). Given a set of abstract rules A and its
input-output size relations IA, the direct calls-to pairs induced by A and IA are:

CA =

⎧

⎨

⎩

〈p(x) � pi(xi), ψ〉

∣

∣

∣

∣

∣

∣

p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj, yj)∈A,
i∈{1, . . . , j}, ∀0<k<i. pk(xk, yk) ← ϕk∈IA
ψ = ∃̄x ∪ xi.ϕ ∧ ϕ1 ∧ . . . ∧ ϕi−1

⎫

⎬

⎭

where ∃̄v means eliminating all variables but v from the corresponding constraint.

Example 4. Consider the rule for doSum in Ex. 2: note that input-output rela-
tions for fact and doSum are true. Direct calls-to pairs for those rules are:

〈doSum(o, x) � doSum1(o′, x′), {x′=x, o′=o}〉
〈doSum1(o, x) � doSumc

1(o′, x′, s0), {x′=x, o′=o, s0=x}〉
〈doSumc

1(o, x, s0) � doSum3(o′, x′), {x′=x, o′=o, s0>0}〉
〈doSumc

1(o, x.s0) � doSum2(o′, x′), {x′=x, o′=o, s0=0}〉
〈doSum3(o, x) � fact(s′0, s

′′
1), {s′0=o}〉

〈doSum3(o, x) � doSum(s′′′1 , s′′2), {s′′′1 =o, x>s′′2}〉

In the last rule, s′′2 corresponds to x.next, so that we have the constraint x>s′′2 .
It can be seen that since the list is not cyclic and does not share with other
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variables, size analysis finds the above decreasing of its size x>s′′2 . Note also
that all variables corresponding to references are assumed to be non-negative.
Similarly, we can obtain direct calls-to pairs for the rule of fact. �

It should be clear that the set of direct calls-to pairs relations CA is also a binary
CLP program that we can execute from a given goal. A key feature of this binary
program is that if an infinite trace can be generated using the abstract program
described in Sec. 3.1, then an infinite trace can be generated using this binary
CLP program [10]. Therefore, absence of such infinite traces (i.e., termination) in
the binary program CA implies absence of infinite traces in the abstract bytecode
program, as well as in the original bytecode program.

Theorem 1 (Soundness). Let P be a JBC program and CA the set of direct
calls-to pairs computed from P . If there exists a non-terminating trace in P then
there exists a non-terminating derivation in CA.

Intuitively, the result follows from the following points. By construction, the
RBP captures all possibly non-terminating traces in the original program. By
the correctness of size analysis, we have that, given a trace in the RBP, there
exists an equivalent one in CA, among possibly others. Therefore, termination
in CA entails termination in the JBC program.

3.4 Proving Termination of the Binary Program CA

Several automatic termination tools and methods for proving termination of
such binary constraint programs exists [9,10,17]. They are based on the idea of
first computing all possible calls-to pair from the direct ones, and then finding a
ranking function for each recursive calls-to pairs, which is sufficient for proving
termination. Computing all possible calls-to pairs, usually called the transitive
closure C∗A, can be done by starting from the set of direct calls-to pairs CA, and
iteratively adding to it all possible compositions of its elements until a fixed-point
is reached. Composing two calls-to pairs 〈p(x) � q(y), ϕ1〉 and 〈q(w) � r(z), ϕ2〉
returns the new calls-to pair 〈p(x) � r(z), ∃̄x̄ ∪ z̄.ϕ1 ∧ ϕ2 ∧ (ȳ = w̄)〉.
Example 5. Applying the transitive closure on the direct calls-to pairs of Ex. 4,
we obtain, among many others, the following calls-to pairs. Note that x (resp.
i) strictly decreases (resp. increases) at each iteration of its corresponding loop:

〈doSum(o, x) � doSum(o′, x′), {o′=o, x>x′, x≥0}〉
〈fact2(o, n, ft , i) � fact2(o

′, n′, ft ′, i′), {o′=o, n′=n, i′>i, i≥1, n≥i′−1}〉 �

As already mentioned, in order to prove termination, we focus on loops in
C∗A. Loops are the recursive entities of the form 〈p(x) � p(y), ϕ〉 which indicate
that a call to a program point p with values x̄ eventually leads to a call to the
same program point with values ȳ and that ϕ holds between x and y. For each
loop, we seek a ranking function f over a well-founded domain such that ϕ |=
f(x)>f(y). As shown in [9,10], finding a ranking function for every recursive
calls-to pair implies termination. Computing such functions can be done, for
instance, as described in [21]. As an example, for the loops in Ex. 5 we get the
following ranking functions: f1(o, x)=x and f2(o, n, ft , i)=n−i+1.
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3.5 Improving Termination Analysis by Extracting Nested Loops

In proving termination of JBC programs, one important question is whether we
can prove termination at the JBC level for a class of programs which is compa-
rable to the class of Java source programs for which termination can be proved
using similar technology. As can be seen in Sec. 4, directly obtaining the RBR
of a bytecode program is non-optimal, in the sense that proving termination on
it may be more complicated than on the source program. This happens because,
while in source code it is easy to reason about a nested loop independently of
the outer loop, loops are not directly visible when control flow is unstructured.
Loop extraction is useful for our purposes since nested loops can be dealt with
one at a time. As a result, finding a ranking function is easier, and computing
the closure can be done locally in the strongly connected components. This can
be crucial in proving the termination of programs with nested loops.

To improve the accuracy of our analysis, we include a component which can
detect and extract loops from CFGs. Due to space limitations, we do not describe
how to perform this step here (more details in work about decompilation [2],
where loop extraction has received considerable attention). Very briefly, when a
loop is extracted, a new CFG is created. As a result, a method can be converted
into several CFGs. These ideas fit very nicely within our RBR, since calls to
loops are handled much in the same way as calls to other methods.

4 Experimental Results

Our prototype implementation is based on the size analysis component of [1]
and extends it with the additional components needed to prove termination. The
analyzer can also output the set of direct call-pairs, which allows using existing
termination analyzers based on similar ideas [10,17]. The system is implemented
in Ciao Prolog, and uses the Parma Polyhedra Library (PPL) [3].

Table 1 shows the execution times of the different steps involved in prov-
ing the termination of JBC programs, computed as the arithmetic mean of five
runs. Experiments have been performed on an Intel 1.86 GHz Pentium M with
1 GB of RAM, running Linux on a 2.6.17 kernel. The table shows a range of
benchmarks for which our system can prove termination, and which are meant
to illustrate different features. We show classical recursive programs such as
Hanoi, Fibonacci, MergeList and Power. Iterative programs DivByTwo and Con-
cat contain a single loop, while Sum, MatMult and BubbleSort are implemented
with nested loops. We also include programs written in object-oriented style,
like Polynomial, Incr, Scoreboard, and Delete. The remaining benchmarks use
data structures: arrays (ArrayReverse, MatMultVector, and Search); linked lists
(Delete and ListReverse); and binary trees (BST).

Columns CFG, RBR, Size, TC, RF, Total1 contain the running times (in
ms) required for the CFG (including loop extraction), the RBR, the size analysis
(including input-output relations), the transitive closure, the ranking functions
and the total time, respectively. Times are high, as the implementation has been
developed to check if our approach is feasible, but is still preliminary. The most
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Table 1. Measured time (in ms) of the different phases of proving termination

Benchmark CFG RBR Size TC RF Total1 Termin Total2 Ratio
Polynomial 138 12 260 1453 26 1890 yes 2111 1.12

DivByTwo 52 4 168 234 4 462 yes 538 1.17

EvenDigits 59 7 383 1565 17 2030 yes 2210 1.09

Factorial 43 3 46 268 3 363 yes 353 0.97

ArrayReverse 58 5 208 339 24 635 yes 834 1.32

Concat 65 8 660 943 38 1715 yes 3815 2.23

Incr 35 12 854 4723 28 5652 yes 6590 1.17

ListReverse 21 5 141 310 5 481 yes 515 1.07

MergeList 107 23 130 5184 21 5464 yes 5505 1.01

Power 14 3 72 357 9 454 yes 459 1.01

Cons 25 7 65 1318 10 1424 yes 1494 1.05

ListInter 136 22 585 9769 49 10560 yes 27968 2.65

SelectOrd 154 16 1298 4076 48 5592 no 25721 4.60

DoSum 57 10 64 923 6 1060 yes 1069 1.01

Delete 121 14 54 2418 1 2608 yes 33662 12.91

MatMult 240 11 2411 4646 294 7602 no 32212 4.24

MatMultVector 254 15 2563 8744 242 11817 no 34688 2.94

Hanoi 39 5 172 979 3 1198 no 1198 1.00

Fibonacci 23 3 90 290 5 411 yes 401 0.98

BST 68 12 97 4643 18 4838 yes 4901 1.01

BubbleSort 152 12 1125 4366 83 5738 no 14526 2.53

Search 65 11 307 756 11 1150 yes 1430 1.24

Sum 64 7 480 1758 35 2343 no 5610 2.39

FactSumList 65 12 80 961 5 1123 yes 1306 1.16

Scoreboard 268 23 1597 4393 81 6362 no 32999 5.19

expensive steps are the size analysis and the transitive closure, since they require
global analysis. Last three columns show the benefits of loop extraction. Termin
tells if termination can be proven (using polyhedra) without extraction. In seven
cases, termination is only proven if loop extraction is performed. Total2 shows
the total time required to check termination without loop extraction. Ratio
compares Total2 with Total1 (Total2/Total1), showing that, in addition to
improving precision, loop extraction is beneficial for efficiency, since Ratio ≥ 1
in most cases, and can be as high as 12.91 in Delete. Note that termination of
these programs may be proved without loop extraction by using other domains
such as monotonicity constraints [7]. However, we argue that loop extraction is
beneficial as it facilitates reasoning on the loops separately. Also, if it fails to
prove termination, it reports the possibly non-terminating loops.

5 Conclusions and Related Work

We have presented a termination analysis for (sequential) JBC which is, to
the best of our knowledge, the first approach in this direction. This analysis
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successfully deals with the challenges related to the low-level nature of JBC,
and adapts standard techniques used, in other settings, in decompilation and
termination analysis. Also, we believe that many of the ideas presented in this
paper are also applicable to termination analysis of low-level languages in gen-
eral, and not only JBC. We have used the notion of path-length to measure the
size of data structures on the heap. However, our approach is parametric on the
abstract domain used to measure the size. As future work, we plan to implement
non-cyclicity analysis [22], constancy analysis [14], and sharing analysis [23], and
to enrich the transitive closure components with monotonicity constraints [7].
Unlike polyhedra, monotonicity constraints can handle disjunctive information
which is often crucial for proving termination. In [5], a termination analysis for
C programs, based on binary relations similar to ours, is proposed. It uses sep-
aration logic to approximate the heap structure, which in turn allows handling
termination of programs manipulating cyclic data structures. We believe that,
for programs whose termination does not depend on cyclic data-structures, both
approaches deal with the same class of programs. However, ours might be more
efficient, as it is based on a simpler abstract domains (a detailed comparison
is planned for future work). Recently, a novel termination approach has been
suggested [8]. It is based on cyclic proofs and separation logic, and can even
handle complicated examples as the reversal of panhandle data-structures. It is
not clear to us how practical this approach is.
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Abstract. Service-oriented computing is calling for novel computational mod-
els and languages with primitives for client-server interaction, orchestration and
unexpected events handling. We present CaSPiS, a process calculus where the no-
tions of session and pipelining play a central role. Sessions are two-sided and can
be equipped with protocols executed by each side. Pipelining permits orchestrat-
ing the flow of data produced by different sessions. The calculus is also equipped
with operators for handling (unexpected) termination of the partner’s side of a
session. Several examples are presented to provide evidence for the flexibility of
the chosen set of primitives. Our main result shows that in CaSPiS it is possible
to program a “graceful termination” of nested sessions, which guarantees that no
session is forced to hang forever after the loss of its partner.

1 Introduction

The explosive growth of the Web has led to the widespread use of de facto standards
for naming schemes (URI, URL), communication protocols (SOAP, HTTP, TCP/IP)
and message format (XML). These three components have been used as the basis for
building communication centered applications distributed over the web, often referred
to as web services, and have put many expectations of the IT community on the growth
of a new computational paradigm known as Service-Oriented Computing (SOC).

In SOC a main issue is the scalability of the proposed languages, models and tech-
niques. Our belief is that the amount of complexity originated in the so-called global
computing applications can be handled by considering well-structured and tightly dis-
ciplined approaches to the modeling of interaction. Well studied process algebras, like
for instance π-calculus [21], have been used as a foundational model for SOC. However,
we see two main problems along this way. The first is separation of concerns: SOC has
different first-class aspects that would be mixed up and obfuscated when encoded via
π-calculus channels. The second is that π-calculus communication primitives seem too
liberal: the lack of structure in the communication topology increases the complexity of
the analysis.

Here, we try to center the design of a new process calculus around a few promi-
nent aspects of SOC applications, possibly reusing elegant patterns appeared in different
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proposals. The three aspects that motivated our design choices are service autonomy,
client-service interaction, and orchestration. Each aspect is briefly discussed below.

Services are heterogeneous computational entities, that are developed separately and
often are scarcely reliable. Each service has full autonomy in denying a request or aban-
doning a pending interaction. A language for SOC should fix some standard mechanism
for programming such decisions and to handle their consequences.

A language for SOC should support programming of complex and safe client-service
interactions. By interaction, we mean the main unit of activity in a service-oriented
application, which is essentially a conversation between a client and an instance of a
service. The interaction may be complex as it will in general comprise both the exchange
of several messages and the invocation of subsidiary services. As an example, consider
a travel agent service that offers packages for organized trips. We expect that a dialogue
takes place between the customer and the service, to let the service learn the customer
preferences, let the customer select one among available packages, confirm or cancel
the choice, and so on. In the course of this interaction, the service may need to invoke
third party services to get, say, up-to-date flight or hotel information. By safe, we mean
that, in principle, the involved parties should always be able either to complete the
interaction or to recover from errors that prevent its completion, like, in the scenario
above, one of the third-party services unexpectedly abandoning the conversation.

Orchestration is the process of assembling different services to build a new one or
simply to perform a specific task. A central aspect of orchestration is the organization
of the data flow among different activities. This flow also determines synchronization of
activities. For instance, in the scenario outlined above, upon client’s request, the travel
agent service can start two new concurrent activities to get hotel and flight information
(by invoking two subsidiary services), wait for their results and finally pass them on to
the customer.

Motivated by these considerations, we introduce a language where sessions and
pipelines are viewed as natural tools for monitoring the communication graph by struc-
turing client-service interaction and orchestration, respectively. Autonomy is reflected
as the ability to leave sessions. We name the new calculus CaSPiS (Calculus of Sessions
and Pipelines).

The use of session is a more abstract, alternative solution w.r.t. the W3C proposal of
correlation sets. Here we use a name-scoping mechanism à la π-calculus to handle ses-
sions. Pipelines have been inspired by Cook and Misra’s Orc [22], a basic and elegant
programming model for structured orchestration of services. In this light, they are seen
as a convenient mechanism for modeling the flow of data between local processes: it
is more general than sequential composition, better suited w.r.t. concurrency and does
not require the explicit and improper use of channels for orchestration tasks. CaSPiS
evolved from SCC (Serviced Centered Calculus) [3], a calculus that arose from a co-
ordinated effort within the EU funded project SENSORIA [23]. The improvements and
relationship of our work w.r.t. other proposals is discussed in the concluding section.
In the rest of this section, we incrementally describe and motivate the main features of
CaSPiS and discuss our results.

CaSPiS in a nutshell. In CaSPiS, service definitions and invocations are written like
input and output prefixes in CCS. Thus sign.P defines a service sign that can be
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invoked by sign.Q. There is an important difference, though, as the bodies P and Q are
not quite continuations, but rather protocols that, within a session, govern interaction
between (instances of) the client and the server. As an example:

!sign.(?x)(νt)〈{x,t}k〉 and sign.〈plan〉(?y)〈y〉↑

are respectively: a (replicated and thus persistent) service whose instance waits for a
digital document x, generates a fresh nonce t and then sends back both the document
and the nonce signed with a key k; and a client that passes the argument plan to the
service, then waits for the signed response from the server and returns this value outside
the session as a result.

Synchronization of s.P and s.Q leads to the creation of a new session, identified by
a fresh name r that can be viewed as a private, synchronous channel binding caller and
callee. Since client and service may be far apart, a session naturally comes with two
sides, written r � P and r � Q, with r bound somewhere above them by (νr). Values
produced by P can be consumed by Q, and vice-versa: this permits description of in-
teraction patterns more complex than the usual one-way and request-response. Rules
governing creation and scoping of sessions are based on those of the restriction opera-
tor in the π-calculus. Note that multiple invocations to the same persistent service will
yield separate sessions and that hierarchies of nested sessions, like r1 � (r2 � P2|r3 � P3)
can arise if services are invoked within a running session. In the above case of service
sign the triggered session is

!sign.(?x)(νt)〈{x,t}k〉 | (νr)
(

r � (?x)(νt)〈{x, t}k〉 | r � 〈plan〉(?y)〈y〉↑
)

.

Here, after one reduction step where the value 〈plan〉 available on the client-side is
transmitted to the pending request (?x) on the service-side (with x substituted by plan
in the continuation), we get:

!sign.(?x)(νt)〈{x,t}k〉 | (νr, t)
(

r � 〈{plan,t}k〉 | r � (?y)〈y〉↑
)

.

Then, the digitally signed value {plan, t}k is computed at the service-side (for some
fresh nonce t) and sent back to the client-side:

!sign.(?x)(νt)〈{x,t}k〉 | (νr,t)
(

r � 0 | r � 〈{plan, t}k〉↑
)

.

The remaining activity will be then performed by the client protocol: r� 〈{plan, t}k〉↑
will emit {plan, t}k outside the (client-side of the) session, becoming the inert process
r � 0 (as already happened to the service side). In fact, values can be returned outside a
session to the enclosing environment using the return operator, 〈 ·〉↑.

Return values can be consumed by other sessions, or used to invoke other services,
to start new activities. This is achieved using the pipeline operator P > Q . Here, a
new instance of process Q is activated each time P emits a value that Q can consume.
Notably, the new instance will run within the same session as P, not in a fresh one. For
instance, what follows is a client that invokes the service sign twice and then stores the
obtained signed documents by invoking a suitable service store:

(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

> (?z)store.〈z〉 .
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The above description collects the main features of what we call the close-free
fragment of CaSPiS that also includes guarded sums and input prefixes with pattern
matching.

The distinguishing feature of our calculus is the presence of novel primitives to ex-
plicitly program session termination, to handle (unexpected or programmed) session
termination and to garbage-collect terminated sessions. As explained before, session
units must be able to autonomously decide to abandon the session they are running in.
But since sessions units model client-server interactions, their termination must be pro-
grammed carefully, especially in the presence of nesting. The command close is used to
terminate the enclosing session side. A terminated session enters the special state � P
that recursively terminates any other session side nested in P. Note that the execution
of a close can depend on some local choice as well as be guarded by the input of some
data from the opposite session side.

The idea is that upon termination of a session side, the opposite session side will be
informed and take some proper counteraction if needed. To achieve this, upon creation
of a session, one associates with the fresh session r a pair of names (k1,k2), identifying
a pair of termination handlers, one for each side. Then, right after execution of close a
signal †(ki) is sent to the termination-handler service ki listening at the opposite side of
the session. This handler will manage the appropriate actions. Since the name ki must be
known to the current side of the session, the more general syntax for sessions is r �k P
where the subscript k refers to the termination handler of the opposite side. To sum up
the above discussion:

r �k
(

close |P
)

may evolve to †(k)| � P .

Information about which termination handlers must be used is established at invoca-
tion time. To this purpose, the more general syntax for invocation is sk1 .Q. It mentions a
name k1 at which the termination handler of the client-side is listening. Symmetrically,
the more general syntax for service definition is sk2 .P, which mentions a name k2 at
which the termination handler of the service-side is listening. Then

sk1 .Q|sk2 .P can evolve to (νr)(r �k2 Q|r �k1 P).

This way, if Q terminates with close , the termination handler k2 of the callee will be
activated, and vice versa, if P terminates then k1 will be activated.

The mechanism of termination handlers is very expressive and flexible. Even if it
may look overcomplicated to use, we emphasize that, up to our knowledge, this is the
only proposal able to guarantee a disciplined termination of nested sessions. We con-
jecture that any mechanism of this kind would be very complicated to handle in say
π-calculus.

Structure of the paper. For the sake of presentation, we introduce CaSPiS in two steps.
First, we present the fragment without session-closing primitives, along with its labelled
transition system semantics and well-formedness criteria (Section 2), with several nice
examples in Section 3. Then we consider the full version of the calculus with session-
closing primitives (Section 4). Our main result shows that, with the given primitives,
it is possible to program what we call “graceful termination” of sessions (Section 5).
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Specifically, we define a notion of balanced process (where all session-sides are pair-
wise balanced) and prove that any unbalanced state reachable from a balanced one can
still become balanced in a finite number of steps. Final remarks, related work and future
research avenues are exposed in Section 6.

2 The close -Free Fragment of CaSPiS

In this section, we introduce the fragment of CaSPiS without the constructs for handling
session termination. The full calculus will be formalized only after the reader has gained
some familiarity with the base constructs.

2.1 Syntax

Let Nsrv and Nsess be two disjoint countable sets, respectively of service names s,s′, ...
and of session names r,r′ . . .. We assume a countable set of names N ranged over
by n,n′, ... that contains Nsrv ∪ Nsess and such that N \ (Nsrv ∪ Nsess) is infinite, and
let x,y, ...,u,v... range over N \ Nsess. We also assume a signature Σ of constructors
f , f ′, ..., each coming with a fixed arity, such that Σ is disjoint from N . We shall use ·̃
to denote sequences of items. The syntax of the basic fragment of CaSPiS is reported
in Figure 1, where operators are listed in decreasing order of precedence.

To improve usability, structured values V can be built via Σ, and selection patterns F
can be used to guard choices (via pattern matching). For simplicity, we consider as basic
values only value expressions V built out of constructors in Σ and names x,y, ...,u,v, ...,
the latter playing the role of variables or basic values depending on the context. We
leave the signature Σ unspecified, but in several examples we shall assume Σ contains
tuple constructors 〈·, ..., ·〉 of arbitrary arity. Richer languages of expressions, compris-
ing specific data values and evaluation mechanisms, are easy to accommodate. Finally,
it is worth to note that session names r,r′, ... do not appear in values or patterns: this
implies that they cannot be passed around, as it will be evident from the operational
semantics (see Section 2.2).

As expected, in (νn)P, the restriction (νn) binds free occurrences of n in P, while
in (F)P an ?x in the pattern F binds the free occurrences of name x in P. We denote
by bn(F) the set of names x such that ?x occurs in F . Processes are identified up to
alpha-equivalence. The guarded sum with I = /0 will also be denoted by 0. Trailing 0’s
will often be omitted.

We will let σ,σ′,σ1, ... range over substitutions, that is, finite partial functions from
N to N . In particular, we let [u/x] denote the substitution that maps x to u. For any
term T , we let T σ denote the result of the capture-avoiding substitution of the free
occurrences of x by σ(x), for each x ∈ dom(σ).

Let us anticipate that the process grammar defined in Figure 1 should be pragmat-
ically considered as a run-time syntax. In particular, sessions r � P can be generated
at run-time, upon service invocation, but a programmer is not expected to explicitly
use them. These considerations will lead us to impose some constraints on the some-
what too liberal syntax of Figure 1 and to introduce a notion of well-formedness (see
Section 2.3).
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P,Q ::= ∑i∈I πiPi Guarded Sum π ::= (F) Abstraction

| s.P Service Definition | 〈V 〉 Concretion

| s.P Service Invocation | 〈V 〉↑ Return

| r � P Session

| P > Q Pipeline V ::= u | f (Ṽ ) Value ( f ∈ Σ)
| P|Q Parallel Composition

| (νn)P Restriction F ::= u | ?x | f (F̃) Pattern ( f ∈ Σ)
| !P Replication

Fig. 1. Syntax of processes

(P|Q)|R ≡ P|(Q|R) (νn)(νm)P ≡ (νm)(νn)P P|(νn)Q ≡ (νn)(P|Q) if n /∈ fn(P)
P|Q ≡ Q|P (νn)0 ≡ 0 ((νn)Q) > P ≡ (νn)(Q > P) if n /∈ fn(P)
P|0 ≡ P !P ≡ P|!P r � (νn)P ≡ (νn)(r � P) if r 
= n

Fig. 2. Structural congruence

Structural congruence. Structural congruence ≡ is defined as the least congruence re-
lation induced by the laws in Figure 2. This set of laws comprises the structural rules
for parallel composition and restriction from the π-calculus, plus the obvious extension
of restriction’s scope extrusion law to pipelines and sessions.

2.2 Operational Semantics

We let
λ−→ be the labelled transition relation induced by the rules in Figure 4. Labels λ

have the syntax and informal meaning defined in Figure 3, where τ is the silent action.
We call a reduction any silent transitions P

τ−→ Q. Note that we shall often abbrevi-
ate (νn1) · · · (νnl)λ as (νñ)λ where ñ = n1, ...,nl . We define n(λ), fn(λ) and bn(λ) as
expected; in particular bn(s(r)) = bn(s(r)) = {r}.

Service Definition and Invocation. Rule (DEF) describes the behaviour of a service defi-
nition: it says that a service s.P is ready to establish a new session named r. Rule (CALL)
describes the complementary behaviour of a service invocation s.Q. Rule (SYNC) de-
scribes session creation as the result of s.P and s.Q synchronizing and, in doing so,
agreeing on a fresh session name r. The new session has two ends, one client’s side
where protocol Q is running and one at service’s side where protocol P is running. A
value produced by a concretion at one side can be consumed by an abstraction at the
other side.

λ ::= τ λi ::= s(r) (service definition) λo ::= s(r) (service invocation)

| λi | (V ) (value consumption) | (νñ)〈V 〉 (value production)

| λo | r : (V ) (consumption within r) | (νñ)r : 〈V 〉 (production within r)
| (νñ) ↑ V (value return)

Fig. 3. Transition labels
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(DEF) r /∈ fn(P)

s.P
s(r)−−−→ r � P

(CALL) r /∈ fn(P)

s.P
s(r)−−−→ r � P

(SYNC) P
s(r)−−−→ P′ Q

s(r)−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)

(OUT) 〈V 〉P 〈V 〉−−−→ P (RET) 〈V 〉↑P
↑V−−→ P (IN) match(F,V ) = σ

(F)P
(V )−−−→ Pσ

(SUM) πiPi
λ−→ P′

∑
i∈I

πiPi
λ−→ P′

(S-IN) P
(V )−−−→ P′

r � P
r:(V )−−−→ r � P′

(S-OUT) P
〈V 〉−−−→ P′

r � P
r:〈V 〉−−−→ r � P′

(S-SYNC) P
r:〈V 〉−−−→ P′ Q

r:(V )−−−→ Q′

P|Q τ−→ P′|Q′ (S-RET) P
↑V−−→ P′

r � P
〈V 〉−−−→ r � P′

(S-PASS) P λ−→ P′

r � P λ−→ r � P′
λ ::= s(r′) |s(r′) |τ |r′ : (V ) |r′ : 〈V 〉
r′ 
= r

(P-SYNC) P
〈V 〉−−−→ P′ Q

(V )−−−→ Q′

P > Q τ−→ (P′ > Q) | Q′ (P-PASS) P λ−→ P′

P > Q λ−→ P′ > Q
λ 
= 〈V 〉

(OPEN) P λ−→ P′ n /∈ bn(λ)

(νn)P
(νn)λ−−−−→ P′

λ ::= (νñ′)〈V 〉 |(νñ′) ↑ V |(νñ′)r : 〈V 〉
n ∈ n(V ) (R-PASS) P λ−→ P′ n 
∈ n(λ)

(νn)P λ−→ (νn)P′

(PAR) P λ−→ P′

P|Q λ−→ P′|Q
fn(Q)∩bn(λ) = /0 (STRUCT) P ≡ Q Q λ−→ Q′ Q′ ≡ P′

P λ−→ P′

Fig. 4. Labelled Operational Semantics

Communication prefixes. Rule (OUT) models the behaviour of concretion 〈V 〉P that
can evolve to P with a label 〈V 〉, denoting emission of value V . Rule (IN) models the
behaviour of an abstraction (F)P that can be seen as a form of guarded command that
relies on pattern-matching: (F)P can evolve to Pσ with (V ), indicating consumption of
a value, only provided the pattern F matches up the value V . This leads to a substitution
σ such that match(F,V ) = σ. Here, the pattern-matching function match is defined as
expected: match(F,V ) = σ, if σ is the (only) substitution such that dom(σ) = bn(F)
and Fσ = V . Rule (RET) models the behaviour of the return primitive 〈V 〉↑P that
can be used to return a value outside the current session if the enclosing environ-
ment is capable of consuming it. Guarded choice has the expected meaning: ∑i∈I πiPi

evolves with λ to P′ if there is an i ∈ I such that πiPi evolves with λ to P′ (see rule
(SUM)).

Communication inside sessions. Rules (S-IN) and (S-OUT) add the name of the inner-
most enclosing session to the labels for intra-session communication. Rule (S-SYNC)
finalizes communication inside session r for complementary action labels.

Communication outside sessions. Rule (S-RET) transforms a return performed inside a
session r into the output of a value for the enclosing environment. Rule (S-PASS) propa-
gates all session-transparent activities, namely s(r′), s(r′), r′ : (V ), (νñ)r′ : 〈V 〉 and τ. In
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fact, services can be accessed and invoked independently from the hierarchy of sessions,
and intra-session communication is always bound to the innermost enclosing session.

Pipelining. Rule (P-SYNC) expresses that in a pipeline P > Q all the values V produced
by P and that can be consumed by Q will trigger a new instance Q′ of Q. (Note that,
after this reduction, Q is again ready to consume the next value produced by P, if any.)
Rule (P-PASS) indicates that the pipeline is transparent to all the other transitions of P,
which are thus propagated to the enclosing context. Also note that Q is idle until a value
produced by P activates one instance of it.

Restriction, parallel and structural congruence. Rules (OPEN), (R-PASS) and (PAR)
are the standard ones for restriction and parallel. However, thanks to the rule for struc-
tural congruence (STRUCT), we need not a close rule for names extruded via rule
(OPEN), because all steps can be performed in normalized processes, with all restric-
tions moved to the top.

Additional Comments. Sessions, service definitions and service invocations can of
course be nested at arbitrary depth. Note that no activity can take place under the scope
of a dynamic operator (see Definition 1 below). On the contrary, when considering static
contexts (see Definition 2 below), concurrent activities can take place at any level of the
session hierarchy. Also note that sessions are completely transparent with respect to
actions different from value production/consumption/return, that is, service invocation
and silent steps.

Remark 1 (About reduction semantics.). It has become common to present the opera-
tional semantics of newly proposed calculi by means of reductions instead of labelled
transitions, with the advantage of a simpler and compact presentation. However, in the
case of CaSPiS, the nesting and interplay of sessions and pipelines introduces some
contextual dependencies on the reductions rules that makes the labelled transitions more
appealing. The interested reader may check Lemma 3 to see all the different kinds of
reductions that must be taken into account (the lemma is given for the full CaSPiS).

2.3 Well-Formedness

As anticipated, we introduce a well-formedness criterion to impose some discipline on
the way CaSPiS primitives can be used and rule out many pathologically wrong process
designs. To this aim, we first introduce some terminology and technical constraints. We
say P has no top bound sessions if P ≡ (νr)P′ implies r /∈ fn(P′), for each P′,r.

A context is a process term with one occurrence of a distinct process variable, say X
(representing the “hole”). In what follows, we shall indicate by C[ · ] a generic context,
and by C[P] the process obtained when textually replacing X by P in C[ · ]. The term Q
occurs in (or is a subterm of) P if there is a context C[ · ] such that P = C[Q]. The notion
of context can be generalized to n-holes contexts as expected. In particular, generic
2-holes contexts will be denoted by C[ ·, · ], with C[P,Q] defined as obvious.

Definition 1. Dynamic operators are service definition s.[ · ] and invocation s.[ · ], any
prefix πi[ · ], right-hand side term of a pipeline P > [ · ] and replication ![ · ]. The remain-
ing operators are static.
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Definition 2. A context C[ · ] is static if its hole does not occur in the scope of a dynamic
operator. Moreover, we say that C[ · ] is session-immune if its hole does not occur in the
scope of a session operator.

We introduce the final ingredient needed for our definition of well-formed process.

Definition 3. Given P and two session names r,r′ ∈ fn(P), we write r ≺P r′ if and only
if P ≡ C[r � C′[r′ � P′]] for some static C[ · ], session-immune C′[ · ] and P′.

In other words, r ≺P r′ if, in P, up to structural congruence, an occurrence of r′ is
immediately within the scope of some session side r� [ · ]. Well-formedness is formally
defined below:

Definition 4 (well-formedness). Assume P ≡ (νr̃)Q, where Q has no top bound sessions
and r̃ ⊆ fn(Q). Then, process P is well-formed if: (a) relation ≺Q is acyclic (that is, ≺+

Q
is irreflexive), (b) modulo alpha conversion, for each r, r� occurs at most twice in P and
never in the scope of a dynamic operator, (c) in any summation ∑i πi, all prefixes πi are
of one and the same kind (either all abstractions, or all concretions or all returns).

The acyclicity of ≺Q rules out vicious situations like r � (P1|r � P2). For the rest, dis-
tinct service invocations, even of the same service, should give rise to distinct and fresh
session names, and, of course, each session should normally have no more than two
sides (one-sided sessions make sense once we allow one side to autonomously close, a
scenario that we shall consider in Section 4). Also, for technical reasons, it is desirable
to forbid mixed sums, that is sums where prefixes of different kinds occur.

In the remainder of this paper, all processes are assumed to be well-formed. By
inspection, it is straightforward to check the validity of the following result.

Lemma 1. Well-formedness is preserved by structural congruence and reductions.

3 CaSPiS at Work

In this section we present some simple examples that aim at showing how CaSPiS can
be used for specifying behaviours of structured services. The examples expose some
important patterns for service composition, for which we find it convenient to introduce
a set of derived operators.

In the following we will assume the following services are available. Service
emailMe when invoked with argument msg has the effect of sending a message msg
to one’s email address. Services ANSA, BBC and CNN, upon invocation, return a possi-
bly infinite sequence of values representing pieces of news (disregarding the identity of
these news, these services resemble !ANSA.!(νn)〈n〉, etc.).

Invocation patterns. Recurrent service invocation patterns are reported in Figure 5:

– s〈V 〉 invokes the service s and then sends the value V over the established session;
– s(V ) invokes s, then sends value V over the established session, then waits for a

value from the service (the result of the service invocation) and publishes it locally
(outside the established session);
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s〈V 〉 �
= s.〈V 〉 (One Way)

s(V )
�
= s.〈V 〉(?x)〈x〉↑ (Request Response)

P >> s
�
= P > (?x)s(x) (Simple Pipe)

s(!)
�
= s.!(?x)〈x〉↑ (Get All Responses)

Fig. 5. CaSPiS derivable constructs

– P >> s is a pipeline based composition to invoke service s on all values produced
by P;

– s(!) invokes s, then keeps retrieving and publishing all responses from s.

Using the request-response and one-way patterns we can rewrite the example in the
Introduction as: sign(plan) > (?z)store〈z〉. Simple pipe can be used to write the sign-
ing of a document by two different authorities as 〈plan〉 >> sign1 >> sign2. Usage
examples of the get-all-responses pattern are reported below for invoking news ser-
vices.

Selection. Command select permits collecting the first n values emitted by a set of
processes running in parallel and satisfying a given sequence of patterns.

Formally, we define select F1, . . . ,Fn from P as follows:

select F1, . . . ,Fn from P
�
= (νs)

(

s.(F1). . . . (Fn)〈F̂1, . . . , F̂n〉↑ | s.P
)

where for each pattern Fi, F̂i denotes the value Vi obtained from Fi by replacing each
?x with x. A useful variation of the above command is select F1, . . . ,Fn from P in Q,
defined as follows:

select F1, . . . ,Fn from P in Q
�
= select F1, . . . ,Fn from P > (F1, . . . ,Fn)Q

As an example the process

select ?x,?y from
(

ANSA(!) |BBC(!) |CNN(!)
)

in emailMe〈x,y〉

will send to the specified email address a pair of the first two pieces of news among
those arriving from ANSA, BBC and CNN, no matter who has actually produced them.

Waiting. When waiting for values produced by a set of concurrent activities, it may be
useful not only to constrain the patterns of the expected values, but also to fix the exact
binding between patterns and activities, that is, to specify which activity is expected to
produce what. For instance, in the previous example, one might want to receive a mail
with three pieces of news, the first coming from ANSA, the second from BBC and the
third from CNN. This also implies that a mail will be sent only when a piece of news
has been received from each of these services. We let wait F1, . . . ,Fn from P1, . . . ,Pn

be a process that emits tuple 〈V1, . . . ,Vn〉, where Vi is the first value emitted by Pi and
matching Fi, for i = 1, ...,n. We have that:

wait F1, . . . ,Fn from P1, . . . ,Pn
�
= (νs)

(

s.(t1(F1)). . . . (tn(Fn))〈F̂1, . . . , F̂n〉↑
| s.( select F1 from P1 in 〈t1(F̂1)〉| · · ·

| select Fn from Pn in 〈tn(F̂n)〉 )
)
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We can also consider the following variation:

wait F1, . . . ,Fn from P1, . . . ,Pn in Q
�
=wait F1, . . . ,Fn from P1, . . . ,Pn > (F1, . . . ,Fn)Q

Then, wait ?x,?y,?z from ANSA(!) , BBC(!) , CNN(!) in emailMe〈x,y,z〉 will send an
email containing the first pieces of news distributed by each of ANSA, BBC and CNN.

Travel Agent Service. We put at work macros select and wait defined above for de-
scribing a classical example of service composition: a Travel Agent Service. A travel
agent offers its customers the ability to book packages consisting of services offered
by various providers. For instance: Flight and Hotel Booking. Three kinds of book-
ing are available: Flight only, Hotel only, or both. A customer contacts the service
and then provides it with appropriate information about the planned travel (origin and
destination, departing and returning dates,. . . ). When a request is received, the ser-
vice contacts appropriate services (for instance Lufth and Alit for flights, and HInn
and BWest for hotels) and then compares their offers to select the most convenient
(this is actually done by invoking a sub-service compare), which is returned to the
customer.

This service can be specified in CaSPiS as follows:

!ta. (fly(?x)).wait ?y,?z from Lufth〈x〉,Alit〈x〉 in compare(y,z)
+ (hotel(?x)).wait ?y,?z from BWest〈x〉,HInn〈x〉 in compare(y,z)
+ (fly&hotel(?x)).wait ?y,?z from ta( f ly(x)),ta(hotel(x)) in 〈y,z〉

After invocation, one message among three possible kinds of requests is expected:
fly(V ), hotel(V ) and fly&hotel(V ), where value V contains trip information. For exam-
ple, the first case, two values, each containing an offer for a flight, are obtained from
Lufth and Alit. The pair of these values is passed to service compare that selects
the most convenient, and then immediately returned on to the client. Note that, upon
receiving a fly&hotel request, service TA recursively invokes itself for determining the
best offers for flight and hotel. These values are then returned to the client.

π-calculus channels. By analogy with SCC [3], it can be easily inferred that the close-
free fragment of CaSPiS is expressive enough to model (lazy) λ-calculus and that, in
the absence of pattern matching, it can be encoded in π-calculus.

The close-free fragment of CaSPiS is also expressive enough to encode π-calculus.
Indeed, input and output over a channel a can be encoded in CaSPiS as follows:

a(x).P
�
= a.(?x)〈x〉↑ > (?x)P av.P

�
= a.〈v〉〈•〉↑ > (•)P

A proxy service. We conclude this section by considering the description of a simple
proxy service that, once received a service name s and a value x, invokes s with param-
eter x and sends back to the caller all the values emitted by s:

!proxy.(?s,?x)s.〈x〉!(?y)〈y〉↑
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4 The Full Calculus

The calculus we have presented in the preceding sections offers no primitives for han-
dling session closing. These primitives might be useful to garbage-collect terminated
sessions. Most important, one might want to explicitly program session termination, in
order to implement cancellation workflow patterns [24], or to manage abnormal events,
or timeouts.

Sessions are units of client-server cooperation and as such their termination must be
programmed carefully. At least, one should avoid situations where one side of the ses-
sion is removed abruptly and leaves the other side dangling forever. Also, subsessions
should be informed and, e.g., close in turn. The full CaSPiS we are going to introduce
comprises mechanisms for programming disciplined closing sessions. The mechanism
of session termination we shall adopt has been informally described in the Introduction.
Before introducing this extension formally, we discuss a couple of additional issues
below.

An important aspect of our modelling is that, when shutting down a side, the emit-
ted signal †(k) is (realistically) asynchronous. In other words, we have no guarantee
as to when the termination handler at the opposite side will be reached by †(k). So,
for example, by the time †(k) reaches its destination, the other side might in turn have
entered a closing state � Q on its own, or be closed right away, as a result of the clos-
ing of a parent session. These aspects must be taken into account when defining what
“well-programmed” closing means (see Section 5). In general, dangling †(k) cannot be
avoided, but we will be able to avoid sessions dangling forever.

It is worth mentioning that there are at least two obvious alternatives to the mecha-
nism we have chosen. One would be to use close as a primitive for terminating instan-
taneously both the client-side and service-side sessions. But, as discussed above, this
strategy conflicts with the two parties being in charge for the closing of their own ses-
sion sides. A second alternative would be to use close as a synchronization primitive,
so that the client-side and service-side sessions are terminated when close is encoun-
tered on one side and close on the other side. This strategy conflicts with parties being
able to decide autonomously when to end their own sessions. The use of termination
handlers looks a reasonable compromise: each party can exit a session autonomously
but it is obliged to inform the other party.

4.1 Syntax and Operational Semantics of the Full Calculus

Syntax. In what follows, we assume a new countable set K of signal names k,k′, ...,
disjoint from session and service names. The syntax of full CaSPiS is reported in
Figure 6. In addition to the extended primitives sk.P, sk.P and r �k P and to the new
primitives close , †(k) and � P discussed in the Introduction, note the presence of ter-
mination listeners k ·P that are used to handle termination signals †(k).

In what follows, we say that a name n occurs free in P underneath a context C[ · ] if
there is a term Q such that n ∈ fn(Q) and P = C[Q]. For instance, k occurs free in !k ·0
underneath ![ · ], while it does not occur free in !(νk)(k ·0) underneath ![ · ].

Well-formedness. Beside those reported in Section 2, we assume the following addi-
tional well-formedness conditions on the syntax presented in Figure 6:
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P,Q ::= ∑i∈I πiPi Guarded Sum

| sk.P Service Definition

| sk.P Service Invocation

| P > Q Pipeline

| close Close

| k ·P Listener

| †(k) Signal

| r �k P Session

| � P Terminated Session

| P|Q Parallel Composition

| (νn)P Restriction

| !P Replication

Fig. 6. Syntax of full CaSPiS

r �k′ (†(k)|P) ≡ †(k)|r �k′ P (†(k)|P) > Q ≡ †(k)|(P > Q) � †(k) ≡ †(k)
� r �k P ≡ � r�k � P � (P > Q) ≡ (� P) > Q �� P ≡ � P

� P|Q ≡ � P| � Q � (νx)P ≡ (νx) � P � 0 ≡ 0

Fig. 7. Structural congruence rules for †(k) and �

– for any signal name k and term P, modulo alpha-equivalence there is at most one
subterm of P of the form r �k Q; moreover, k does not occur in concretion prefixes
or return prefixes, and does not occur free in P underneath any dynamic context;

– Terminated sessions operators � do not occur within the scope of a dynamic oper-
ator.

The above conditions are easily seen to be preserved by the structural rules and by the
SOS rules presented below. Note that the second condition above implies that passing
of signal names is forbidden. In what follows, we assume all terms are well-formed.

Structural congruence. Nesting of sessions may give rise to subtle race conditions on
the order of closings. As an example, consider a situation with two sessions r1 and r2,
both ready to close and with r2 nested in r1:

r1 �k1

(

close | P | r2 �k2 (close |Q)
)

.

Suppose the innermost session r2 closes up first; then, before the signal †(k2) reaches its
listener, also session r1 closes up. This leads to the situation †(k1) | � (P |†(k2) | � Q),
where one still wants to activate the listener on k2, despite the fact that †(k2) lies within
a terminated session. This example shows that terminated session operator, �, should
stop any activity but invocation of listeners, that is signals †(k).

The structural rules listed in Figure 7 enrich the set of rules already introduced for
the basic calculus. The law � †(k) ≡ †(k) has been motivated above. The remaining
rules serve the purpose of letting signals †(k) freely move within a term to reach the
corresponding listeners, and distributing the terminated session � over static operators.

Note that, by structural congruence, in any term it is possible to move all restrictions
not in the scope of a dynamic operator to top level.

Operational semantics. The SOS rules for the new operators are reported in Figure 8,
the rules for the remaining operators are the same as those introduced for the basic
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(DEF) sk1 .P
s(r)k2

k1−−−−→ r �k2 P (CALL) sk2 .P
s(r)k1

k2−−−−→ r �k1 P (SYNC) P
s(r)k2

k1−−−−→ P′ Q
s(r)k1

k2−−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)

(LIS) k ·P k−→ P (SIG) †(k) k−→ 0 (T-SYNC) P k−→ P′ Q k−→ Q′

P|Q τ−→ P′|Q′

(END) close close−−−−→ 0 (S-END) P close−−−−→ P′

r �k P τ−→ � P′|†(k)
(T-END) � r �k P τ−→ � P|†(k)

Fig. 8. Labelled Operational Semantics of full CaSPiS

calculus (Section 2). Roughly: (1) rules (DEF), (CALL) and (SYNC) have been updated
to take into account the exchange of termination handler names, (2) new rules (LIS),
(SIG) and (T-SYNC) are used to synchronize a listener with a pending signal for it,
(3) new rules (END) and (S-END) are used to close a session from inside and generate
a signal towards the handler of the partner, and (4) a new rule (T-END) is used to
recursively close session that were nested in a closed session (in a top-down fashion).
Garbage collecting rules for guarded sums, service definitions and service invocations,
like � sk.P

τ−→ 0, are omitted for simplicity, but they can be added without any relevant
consequence on the results in Section 5.

Example 1. Let us consider process News defined as follows:

News
�
= !(νk)collectk.

(

k · close | (νk1)ANSAk1 .(!(?x)〈x〉↑ | k1 · (close |†(k)))
| (νk2)BBCk2 .(!(?x)〈x〉↑ | k2 · (close |†(k)))
| (νk3)CNNk3 .(!(?x)〈x〉↑ | k3 · (close |†(k)))

)

News specifies a news collector exposing service collect. After invocation of this
service, a client receives all the news produced by ANSA, BBC and CNN. The established
session can be closed: either (i) by the client-side, when an action close on the client’s
side is performed, as this will yield a signal †(k) able to activate the corresponding
service-side listener k · close ; or, (ii) when any of the three nested sessions used for
interacting with the news services is closed by peer, yielding the signal †(ki) and hence
†(k). The termination of the topmost session will in turn cause the termination of all
(not yet terminated) nested news clients.

Figure 9 shows a possible propagation of termination. Initially all services have been
invoked and the corresponding sessions have been triggered (Figure 9(a)). Suppose the
session running on ANSA-side shuts down (Figure 9(b)), then its partner session-side
running as a child of the main session of the news collector is informed and termi-
nated. Moreover, the listener causes the termination of the parent session (Figure 9(c)).
Termination of the main session causes the termination of the remaining two children
sections and of the main client-side session (Figure 9(d)). Finally, the sessions running
on BBC-side and CNN-side are also terminated (Figure 9(e)).
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(a) All sides are active. (b) ANSA-side terminates.

(c) News-side terminates. (d) Client-side terminates. (e) BBC/CNN-side terminate.

Fig. 9. Propagation of side-termination via listeners

5 Programming Graceful Termination

The session closing primitives introduced in the preceding section do not guarantee per
se that forever-dangling, one-sided sessions never arise, in the same way as deadlock
can arise in untyped π-calculus processes or termination cannot be guaranteed for all
sequential programs. In this section, we show that this undesirable situation can be
avoided if one makes sure that termination handlers of the form k ·C[close ], for suitable
static contexts C[ · ] and signals k, are installed in the bodies of client invocations and
service definitions. We will be rather liberal with the choice of C[ · ], that may contain
extra actions the termination handler may wish to take upon invocation, e.g., further
signaling to other listeners (a sort of compensation, in the language of long-running
transactions). For example, we anticipate that the process News from Example 1 fits
our requirements.

The key to the proof is a concept of balanced term, roughly, a term with only pairs
of session-sides that balance with each other. We shall prove that these terms enjoy
what we call a “graceful” termination property: informally, any possibly unbalanced
term reachable from a balanced term can get balanced in a finite number of reductions.
Technically, this result will be achieved in two steps. First, we shall introduce a no-
tion of quasi-balanced term, that generalizes that of balanced term. The key property
here is that, differently from balanced-ness, quasi-balanced-ness is preserved through
reductions. Next, we prove that any quasi-balanced term can reduce to a balanced one
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in a finite number of reductions. In order to define these concepts, we need to introduce
some terminology about contexts.

Updated vocabulary. We revisit the terminology presented in Section 2.3 to deal with
the extended syntax of full CaSPiS. A context is static if the hole does not occur in the
scope of a dynamic operator, and quasi-static if the hole does not occur in the scope
of a dynamic operator, except possibly the dead-session operator �. In what follows,
D[ · ],D′[ · ], ... will be used to denote generic quasi-static contexts. Note that reductions
and execution of close actions are permitted underneath static context but, in general,
not underneath quasi-static ones. We say that C[ · ] is session-immune if its hole is not in
the scope of a session operator.

Main definitions. In order to ensure that graceful session closing at runtime, well-
formedness does not suffice, and we have to restrict our syntax in certain ways. The
first step is to ensure that session termination is properly programmed inside all service
definitions and invocations. That is, both on client- and service-side, proper listeners
are in place.

Definition 5 (graceful property). We say P is graceful if, whenever P ≡ Q, Q satisfies
the following conditions for each s and k: (a) sk. and sk. may only occur in Q in subterms
of the form sk.(C[k ·C′[close ]]) or sk.(C[k ·C′[close ]]), with C[ · ],C′[ · ] static and session
immune; (b) in Q there is at most one occurrence of the listener k· and one occurrence
of �k.

For example, obvious “graceful” usages for service invocation and service definition
are (νk1)sk1 .(P1|k1 · close) and (νk2)sk2 .(P2|k2 · close), respectively.

Lemma 2. Let P be graceful and suppose P
τ−→ Q. Then Q is graceful.

The proof of Lemma 2 involves some case analysis based on the following general
lemma that allows us to identify active and passive components of any reduction P

τ−→
Q. (Note that, by definition, the graceful property is preserved by structural congru-
ence.)

Lemma 3 (context lemma for reductions). Suppose P
τ−→ Q. Then there is a 1- or 2-

hole static context, C[ · ] or C[ ·, · ], such that one of the following cases is true (for some
r,k,k′,k′′,s,Vi’s, Fj’s, Pi’s, R j’s, R,P′,σ, static and session-immune C0[ · ],C1[ · ],C2[ · ]
such that match(Vl,Fh) = σ).

1. (Sync)
P ≡ C[sk.P, sk′ .R]
Q ≡ (νr)C[r �k′ P, r �k R] r fresh for P,C[ · ],R

2. (S-Sync)
P ≡ C[r �k (P′|∑i〈Vi〉Pi), r �k′ C0[∑ j(Fj)R j]]
Q ≡ C[r �k (P′|Pl), r �k′ C0[Rhσ]]

3. (S-Sync-Ret)
P ≡ C[r′ �k

(

r �k′′ C1[∑i〈Vi〉↑Pi]|P′), r �k′ C2[∑ j(Fj)R j]]
Q ≡ C[r′ �k

(

r �k′′ C1[Pl]|P′), r �k′ C2[Rhσ]]
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4. (P-Sync)
P ≡ C[(∑i〈Vi〉Pi|P′) > C1[∑ j(Fj)R j] ]
Q ≡ C[Rhσ |

(

(Pl|P′) > C1[∑ j(Fj)R j]
)

]

5. (P-Sync-Ret)
P ≡ C[

(

(r �k C0[∑i〈Vi〉↑Pi]) |P′) > C1[∑ j(Fj)R j] ]
Q ≡ C[Rhσ |

(

(r �k C0[Pl]|P′) > C1[∑ j(Fj)R j]
)

]

6. (T-Sync) P ≡ C[†(k)|k ·R] and Q ≡ C[R]
7. (S-End) P ≡ C[r �k C0[close ]] and Q ≡ C[� C0[0]|†(k)]
8. (T-End) P ≡ C[� (r �k R)] and Q ≡ C[� R|†(k)]

The graceful property is not sufficient to guarantee the main result about we are after,
because it says nothing about balancing of existing sessions. In order to define balancing
at the level of sessions, we need to introduce some more terminology.

Definition 6 (r-balancing). Let P be a process. We say P is

– r-balanced if either r /∈ fn(P) or, for some static C[·] not mentioning r, k and k′

(with k 
= k′), P ≡ C[r �k A,r �k′ B] where one of the following holds for some
static, session-immune C′[·] and C′′[·]
(a) A ≡ C′[close ]
(b) A ≡ C′[†(k′)|k′ ·C′′[close ]]
(c) A ≡ C′[k′ ·C′′[close ]]
and either (a) or (b) or (c) holds for B, with k in place of k′.

– quasi r-balanced if either P is r-balanced or, for some static C[·] not mentioning r,
P ≡ C[r�k A] with either of (a) or (b) above holding for A, or P ≡ C[� r�k A] with
either of (a) or (b) or (c) above holding for A.

We are now ready to give the definition of (quasi-)balancing for processes.

Definition 7 ((quasi-)balanced processes). Assume P ≡ (νr̃)Q, where Q has no top
bound sessions and r̃ ⊆ fn(Q). We say P is balanced (resp. quasi-balanced) if:

(a) P is graceful, and
(b) for each r ∈ fn(Q), Q is r-balanced (resp. quasi r-balanced).

Clearly balancing implies quasi-balancing.

Theorem 1 (graceful termination). Let P be balanced. Whenever P
τ−→∗ P′ there exists

a balanced process Q such that P′ τ−→∗ Q.

Proof (Sketch). The proof involves two main steps:

– First, we show that for any quasi-balanced process R, if R
τ−→ R′, then R′ is also

quasi-balanced.
– Second, we prove that for any quasi-balanced process R there is a balanced process

R′′ such that R
τ−→∗R′′.

Since P is balanced by hypothesis, then it is also quasi-balanced. Therefore P′ is quasi-
balanced (by straightforward induction, using the first fact above) and we can apply the
second fact above to deduce the existence of a suitable Q reachable from P′.
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Example 2. It is easy to observe that process News defined in Example 1 is balanced.
This guarantees that whenever a client closes the session established for interacting
with service collect, eventually all the nested sessions will be closed. Moreover, if the
sessions that interact with the news servers are closed, the main session will be closed
and the client will be notified. In fact, the example shows a “graceful” usage pattern for
closing the parent session after the unexpected termination of a child session.

6 Conclusion, Related Work and Future Work

We have presented CaSPiS, a core calculus for service-oriented applications. One of
the key notions of CaSPiS is that of a session, which allows for the definition of arbi-
trarily structured interaction modalities between clients and services. The presentation
of CaSPiS have included the full formalization of the operational semantics in the SOS

style and a simple discipline to program graceful session termination. A number of ex-
amples witness the expressiveness of our proposal. A recent prototype implementation
is also available [2].

The design of CaSPiS has been influenced by the π-calculus [21] and by Orc [22].
Indeed, one could say that CaSPiS combines the dataflow flavour of Orc (pipelines)
with the name-scoping mechanisms of the π-calculus (sessions). There are important
differences with these two languages, though, that in our opinion make CaSPiS worth
studying on its own. There is no notion of a session in Orc: client-service interaction is
strictly request-response. Complex interaction patterns can possibly be programmed in
Orc by correlating sequences of independent service invocations via some ad-hoc mech-
anism (e.g. state variables). Asymmetric parallel in Orc offers a way for implementing,
e.g., simple cancellation patterns. However, in Orc each site invocation can return at
most one value, so that cancellation has a purely local effect. Our graceful termina-
tion improves on that mechanism by dealing with nested sessions and informing any
side about the termination of its opposite side. Sessions and pipelines can possibly be
encoded into π-calculus, but this would certainly cost the use of several levels of “con-
tinuation channels” to specify where the results produced by a session should be sent
(i.e., whether to a father session, to a pipeline or to the surrounding environment). This
would make the resulting code pretty awkward (see also [3]). As our examples show,
sessions and pipelines are handy constructs that is worth having as first-class objects.
This fact becomes even more evident when dealing with session termination, which has
no (obvious) counterpart in the π-calculus.

CaSPiS evolved from SCC [3], because the original proposal turned out to be unsat-
isfactory in some important respects. In particular, SCC had no dedicated mechanism
for orchestrating values arising from different activities, and only had a rudimentary
mechanism for handling session termination, that would immediately kill the process
(and its subprocess) executing the closing action, without activating any compensation
action. The first problem motivated the proposal of a few evolutions of SCC. The one
proposed in [16] is stream-oriented, in that values produced by sessions are stored into
dedicated queues, accessible by their names. The one proposed in [10] has instead ded-
icated message passing primitives to model communication in all directions (within a
session, from inside to outside and vice-versa). As seen, CaSPiS relies solely on the
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concept of pipeline, but introduces pattern matching. More recently, a location-aware
extension of SCC has also been proposed [6] that allows for the dynamic joining of
multiparty sessions, but session termination policies are not addressed there.

A number of other proposals have been put forward, in the last couple of years,
aiming, like us, at providing process calculi to support specification and analysis of
services, see e.g. [17,9,19,11,25]. We do not enter into a detailed description of these
proposals, which are based on rather different concepts and primitives, like correlation
sets.

Developing safe client-service interactions requires some notion of compliance be-
tween conversation protocols. In this respect, the presence of pipelines and nested ses-
sions makes the dynamics of a CaSPiS session quite complex and substantially different
from simple type-regulated interactions as found in the π-like languages of, e.g. [14,15],
or in the finite-state contract languages of [4,12,13]. Two recent contributions exploring
the problem of compliance in the setting of CaSPiS are [1,8], whose type systems make
evident the benefits of the concept of session. A type inference algorithm is proposed
in [20].

Regarding future work, the impact of adding a mechanism of delegation deserves
further investigation. In fact, delegation could be simply achieved by enabling session-
name passing that is forbidden in the present version. However, the consequences of this
choice on the semantics are at the moment not clear at all. We also plan to investigate
the use of the session-closing mechanism for programming long-running transactions
and related compensation policies in the context of web applications, in the vein e.g.
of [7,18], and its relationship with the cCSP and the sagas-calculi discussed in [5].
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Abstract. Current research on verifying security properties of communication
protocols has focused on proving integrity and confidentiality using models that
include a strong Man-in-the-Middle (MitM) threat. By contrast, protection mea-
sures against Denial-of-Service (DoS) must assume a weaker model in which an
adversary has only limited ability to interfere with network communications. In
this paper we demonstrate a modular reasoning framework in which a protocol P
that satisfies certain security properties can be assured to retain these properties
after it is “wrapped” in a protocol W[P ] that adds DoS protection. This modular
wrapping is based on the “onion skin” model of actor reflection. In particular, we
show how a common DoS protection mechanism based on cookies can be applied
to a protocol while provably preserving safety properties (including confidential-
ity and integrity) that it was shown to have in a MitM threat model.

1 Introduction

System security has many aspects, including secrecy, authentication, access control,
availability, and many target sub-systems such as hardware, network protocols, operat-
ing system, application software, and so on. Security properties are typically verified
of sub-systems, for example, by showing that a network protocol correctly uses cryp-
tography to preserve a secret. But what we care about is the end-to-end security of the
whole system, noting that it is a complex combination of its sub-systems. Modularity
constructs and modular reasoning about properties are crucial to obtaining such end-
to-end security guarantees. In this paper we present some modularity techniques and
preservation results of this nature about two quite different kinds of sub-systems and
properties, namely, an underlying communication protocol that may enjoy some safety
properties, either related to security or to broader requirements, and a sub-system pro-
tecting against Denial of Service (DoS), which ensures some availability properties.

In actual practice, DoS protection mechanisms are not described and implemented
in a modular way: typically an underlying protocol is changed in an ad-hoc way. For
example, the TCP protocol can be defended against SYN attacks using SYN cook-
ies [7], but requirements such as the need to assure compatibility with clients running
diverse versions of TCP prevent a modular addition of this strategy. In particular, the
TCP solution cannot be applied directly to other protocols, because it is inter-woven
in a non-modular way with the specifics of TCP. Our first contribution in this paper
is to consider a common DoS protection mechanism based on cookies, provided and
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described in a modular way as a generic “wrapper” that can be applied to an under-
lying protocol under minimal assumptions. In this way, a DoS protection mechanism
becomes highly reusable and modular: one can develop its generic DoS wrapper once
and for all. The wrapper then provides the desired DoS protection regardless of the
underlying protocol it is applied to (under minimal assumptions): no changes to the un-
derlying protocol are required. Specifically, we leverage ideas from distributed object
reflection, where a distributed object can be wrapped by a “meta-object” that mediates
its communication, with no required changes to the code of the underlying object. In
our treatment we use a simplified version of the “onion skin” model of actor reflec-
tion [2], formalized as rewrite theories [12, 31]. We specify in rewriting logic and study
in detail a generic wrapper for cookies like the strategy used in TCP SYN cookies. To
illustrate this modularity, we sketch how it can be applied to a protocol like Internet Key
Exchange (IKE) as was done in IKEv2. Although, our modular approach is applied to
cookie mechanism in this paper, we believe that our techniques will apply to other DoS
protection mechanisms such as those described in [19, 24].

Our second contribution is to prove that the system composition obtained by adding
a cookie-based protection wrapper to a protocol preserves all the safety properties en-
joyed by the original protocol. That is, the new availability properties enjoyed by the
wrapped protocol are obtained without losing any of the safety properties. We obtain
this result by specifying the given protocol, the wrapper, and the wrapped protocol as
rewrite theories, and proving that: (1) a suitable stuttering simulation exists between
the wrapped protocol and the original one; and (2) such simulations preserve all safety
properties satisfied by the original protocol. The stuttering simulation constructed as a
homomorphic map between the rewrite theories of the protocol with the cookie-wrapper
and the original protocol essentially “forgets” the cookies used for DoS protection.
We point out here that there is no simulation of the original protocol by the wrapped
protocol. This is because the presence of the DoS protection necessarily implies that
“malicious” service requests from illegitimate clients, which would be serviced in the
absence of the DoS protection, must be ignored by the server . The dropping of the ma-
licious service requests by the server wrapper also implies that we have to assume that
the protocols are executed in a lossy environment, which allows the underlying protocol
to simulate the dropping of the service requests by loss of messages.

Note that the availability properties enjoyed by the DoS protection mechanism (in
this case the cookie mechanism) are, by definition, those of the wrapped protocol. That
is, they are emergent properties of the corresponding wrapped composition, which typ-
ically did not exist in the original protocol. In this paper, we assume that these avail-
ability properties are analyzed separately by existing methods [1, 3, 27, 29]. The main
result of our paper then ensures that: (i) if the underlying protocol, say P , satisfies a
set Γ of safety properties; and (ii) if the application W [P ] of the cookie wrapper W to
protocol P satisfies a set Δ of availability properties, then W [P ] satisfies both Δ and
the safety properties Γ .

In the case of security-related safety properties Γ , such as secrecy and authentication
properties, enjoyed by a protocol P , such properties are not just enjoyed by P itself:
they are enjoyed by P in the context of a malicious environment that includes a Man-in-
the-Middle (MitM) threat, which we can specify with a separate rewrite theory I. That
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is, the security-related safety properties Γ are satisfied by the union of theories P ∪ I.
To cover also these security-related safety properties, we prove a second version of our
main theorem corresponding to safety properties that involve a MitM threat, against
which the original protocol had been proved secure. We show that such an attacker can-
not violate any of the already-proved safety properties for the cookie-wrapped extension
of the protocol. Since the assumptions on the underlying protocol are really minimal,
our result applies to the preservation of security-related safety properties for a wide
range of cryptographic protocols. Therefore, proofs of such properties do not have to be
redone after such protocols are subsequently hardened against DoS attacks by a cookie
mechanism. Furthermore, since the MitM attacker in the paper is parametrized by an
equational theory, our preservation result also applies to safety properties proved in the
presence of a MitM attacker that can exploit algebraic properties of the cryptographic
constructs used in protocol messages. We discuss one example application of our main
result to a concrete protocol, namely, IKEv2 and its cookie mechanism.

The main technical challenge in proving the existence of the stuttering simulation in
presence of the MitM threat is that the simulation can no longer be a homomorphic map
that just “forgets” cookies. This is because the MitM attacker can intercept the cookies
and generate new messages such as embedding the intercepted cookies within encrypted
messages. Since the wrappers only perform a check of the accompanying cookies, these
encrypted messages may lead to protocol executions which will not be captured by a
simulation that forgets the cookies. This issue is resolved by exploiting the capability of
the MitM attacker to generate cookies – cookie generation by the wrappers is simulated
by the MitM attacker generating and storing new cookies.

The paper is organized into seven sections. Section 2 describes some preliminary
concepts. Section 3 describes the underlying protocol semantics. Section 4 describes
the stuttering simulation and preservation results for the cookie wrapper. Section 5 de-
scribes the MitM intruder model and how safety properties are preserved for the appli-
cation of the wrapper. Section 6 discusses future work and Section 7 gives conclusions
and sketches related work.

2 Preliminaries

The aim of this paper is to formalize, in a modular way, a simple cookie wrapper and
to show that its use in transforming an underlying protocol does not invalidate the
safety properties the underlying protocol enjoyed in a MitM model. The semantics of
the underlying protocol and the protocol with the cookie wrapper are described using
Kripke structures. A next-free safety fragment [35] of the logic LTL is used to specify
safety properties. The preservation of safety properties is shown by exhibiting a stutter-
ing simulation between the wrapped protocol and the underlying protocol. The Kripke
structures are generated using rewrite theories.

2.1 Cookie-Based DoS Protection

A cookie is used in many network protocols (such as HTTP [15]), by one communicat-
ing party A to store some persistent information at B. A cookie k, when presented by
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B to A, gives a weak guarantee that B has communicated with A at least once before to
get the cookie. This guarantee is weak, because the cookie could be eavesdropped by
a MitM intruder, who could impersonate B. However, in a typical (Distributed) Denial
of Service flooding attack, the attacker tries to overwhelm a server’s limited resources
(such as memory or processing power) by sending, with little overhead, a large num-
ber of requests using different faked source IP address (see for e.g., [34]). If the cookie
mechanism is used the attacker will not receive the cookies sent to the fake IP addresses
unless it has a MitM ability. An adversary with MitM ability has already won, so DoS
defense mechanisms target to protect against weaker adversaries.

Client

request
��
Server

response
�� Client

request

��

cookie,request

�� Server

cookie

��

response

��

For instance, a simple request-response protocol can be made DoS-resistant by using
cookies and the communication pattern shown in the right of the above figure. The basic
protocol is modified so that, when first contacted, the server sends a cookie to be stored
at the client’s side. The server simultaneously retains the ability to retrieve the cookie-
value corresponding to that client. From then on, every client request is accompanied by
the cookie, that the server can validate before committing any resources to that request.
The server can reject all requests without the right cookies, with little overhead (see
for e.g., [7]). Since the attacker uses spoofed addresses, it will not receive the cookie
response from the server and thus cannot make any resource-intensive requests, thereby
preventing the attack.

2.2 Kripke Structures, Safety Properties and Stuttering Simulation

The semantics of the underlying and wrapped protocols are defined using Kripke struc-
tures. Given a set of propositions AP, an AP-Kripke structure A is a tuple (A, →A, LA)
where the set A is the set of configurations of the protocol, the transition relation
(→A⊆ A × A) describes the temporal evolution of the configurations, and the labeling
function LA : A → 2AP describes the set of propositions true in a configuration.

The safety-properties that we shall consider in this paper are expressed in the follow-
ing next-free safety fragment [35] of the logic LTL(AP) (henceforth called Safety\©).
The syntax of the fragment Safety\© in BNF notation is:

ψ = (p) � (¬p) � (ψ ∨ ψ) � (ψ ∧ ψ) � (ψ W ψ) � (� ψ)

where p ∈ AP. Here, the modalities W and � are the usual weak-until and always
modalities of LTL. We refer the reader to [35] for a formal definition. Please note that
we could have also used other characterizations of safety properties such as the syntactic
characterization using past operators [26] or the semantic characterization of safety [4].

As discussed above, we shall show that the safety properties are preserved by a
wrapped protocol by exhibiting a stuttering simulation between the wrapped protocol
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and the underlying protocol. Intuitively, a system A is simulated by a system B if every
execution step of A can be matched by an execution step of B. Since we are primarily
interested in a next-free fragment of LTL, we require that an execution step of A is
matched by zero or more execution steps of B. Formally,

Definition: Given two AP-Kripke structures A = (A, →A, LA) and B = (B, →B, LB)
a relation H ⊆ A × B is said to be a stuttering simulation if for all a, b such that aHb,
the following hold: LA(a) = LB(b), and if a →A a′ then there exists a natural number
0 ≤ j and elements b0, b1, . . . , bj such that

1. b0 = b
2. bl →B bl+1 for all 0 ≤ l < j, and
3. there is a 0 ≤ k ≤ j such that aHbl for all 0 ≤ l ≤ k and a′Hbl for all k < l ≤ j.

The Kripke structure A is said to be stuttering simulated by B if there exists a stuttering
simulation H ⊆ A × B.

Stuttering simulations reflect satisfaction of Safety\© properties.

Proposition 1. Given two AP-Kripke structures A = (A, →A, LA) and B = (B, →B,
LB), a stuttering simulation H ⊆ A × B, configurations a, b such that aHb and a next-
free safety formula, ψ ∈ Safety\©, we have B, b |=B ψ ⇒ A, a |=A ψ.

2.3 Rewriting Logic

We specify the configurations of a protocol as the algebraic data type associated to
an order-sorted equational theory (Σ, E) [16], where the signature Σ specifies the
sorts, a subsort relation interpreted as subset inclusion in the algebras, and the constants
and function symbols, and where E is a set of Σ-equations. The algebraic data type
associated to (Σ, E) is the initial algebra TΣ/E [16]. In our protocols, the signature
Σ will contain a sort Conf of object and message configurations as the chosen sort of
configurations, so that the set of protocol configurations is the set TΣ/E,Conf . The theory
(Σ, E) only specifies the statics of a protocol. A protocol P , including its dynamics,
is specified as a rewrite theory P = (Σ, E, R) [30], where the order-sorted equational
theory specifies the configurations as explained above, and where R is a set of rewrite
rules of the form t −→ t′ specifying the protocol concurrent transitions, that is, the
protocol’s “dynamics.”

A set AP of atomic propositions for the configurations of a protocol P = (Σ, E, R)
can be easily specified as equationally-defined Boolean predicates in (Σ, E). The atomic
propositions AP , plus the choice of the sort Conf as the sort of configurations define a
Kripke structure K(P) (see [9]), whose configurations are those of P , whose transitions
are the one-state rewrites with R modulo the equations E, and whose labeling function
maps a state to all the atomic propositions that are provable true in that state. In this
paper we allow deadlock configurations, and therefore the transition relation of K(P)
is not required to be total.

In our modular reasoning we will use equational and rewrite theory inclusions (Σ, E)
⊆ (Σ, E), and (Σ, E, R) ⊆ (Σ, E, R), with the obvious meaning: Σ ⊆ Σ′, E ⊆ E′,
and R ⊆ R′; and also theory unions (Σ, E) ∪ (Σ, E), and (Σ, E, R)∪ (Σ, E, R), also
with the obvious meaning: Σ ∪ Σ′, E ∪ E′, and R ∪ R′.
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3 Underlying Protocol

We use rewriting logic to express both an underlying, generic protocol satisfying min-
imal requirements, and the enhancement of such a protocol with DoS protection. The
rewrite theories of both the underlying protocol and the enhancement of it with DoS
protection shall assume that there is an equational theory M = (ΣM, EM) which
specifies the messages exchanged between clients and servers, with ΣM a signature
declaring sorts, subsorts and function symbols and EM a set of Σ-equations. Further-
more, we make the following assumptions:

– There is a sort MsgCnts that describes the contents of a message. We hereafter use
m, m1, m2, etc., as variables of sort MsgCnts.

– There is a sort Cookie for cookies. The sort Cookie is a subsort of sort MsgCnts.
We use k, k′, etc., as variables of sort Cookie.

– There is a function symbol ( , ) : MsgCnts × MsgCnts → MsgCnts. Intuitively,
the term (m1, m2) is the pair that consists of two messages m1 and m2.

– There is a sort Seed, a subsort of MsgCnts, which is used by a unary function
rand : Seed → Cookie, to generate a new cookie. There is a constant 1 of sort
Seed and a unary function next : Seed → Seed for incrementing the seed. As
we shall see, the server wrapper stores a seed for cookie generation. The wrapper
increments the seed each time it generates a fresh cookie. We shall use l, l′ as
variables of sort Seed. It will also be convenient to have a binary function symbol
Rnd : Seed → MsgCnts such that Rnd(l) = (next(l), rand(l)).

– There are sorts CId and SId which stand for the identifiers for the clients and the
servers. There is a sort Id with CId and SId as subsorts. The sort Id is a subsort of
MsgCnts. We use C, C1, etc., as variables of sort CId, S, S1, etc., as variables of
sort SId and id, id1, etc., to refer to variables of sort Id.

– There is a sort Msg and a ternary function symbol (to , from ) : Id×MsgCnts×
Id → Msg. The term (to id1, m from id2) stands for a message m sent by id2 for
id1. We shall use msg, msg ′ as variables of sort Msg.

– There is also a constant connect of sort MsgCnts. The term (to S, connect from C)
is the connect request sent by C to S.

– There is sort Conf along with a constant null of sort Conf. The sort Msg is a sub-
sort of Conf. There is also a binary symbol function ; : Conf × Conf → Conf
which intuitively stands for multiset union. Properties of associativity, commuta-
tivity and the identity (null) of ; are enforced in the set of equations EM. Later,
we shall extend Conf to include the state of clients, servers and the intruder. A term
of sort Conf will stand for protocol configurations and contain the messages, state
of clients, servers and the intruder.

There might be other sorts and equations depending on the underlying protocol. For
example, if the protocol uses symmetric encryption then there will be sorts for keys and
two binary function symbols, say enc and dec, for encryption and decryption respec-
tively. Furthermore, EM will contain the equation dec(key, enc(key, m)) = m.

The messages on the network are represented as multisets of messages. Formally, a
multiset of messages is a ground term of sort Conf defined recursively as follows:
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1. If id1, id2 are ground terms of sort Id and m is a ground term of sort MsgCnts then
(to id1, m from id2) is a multiset of messages.

2. If B1 and B2 are multisets of messages then B1; B2 is a multiset of messages.

For example, the multiset (to S, m from C); (to C, m′ from S) represents two messages
– m sent by (or some entity claiming to be) the client C meant for the server S and m′

sent by (or some entity claiming to be) the server S meant for the client C.
Given the message equational theory M = (ΣM, EM), the underlying protocol is

given using a rewrite theory P = (ΣP , EP , RP) with ΣM ⊆ ΣP and EM ⊆ EP . The
signature ΣP in addition to ΣM must contain the following sorts.

– There are sorts CIntState and SIntState which describe the internal states of the
clients and servers respectively.

– There is a sort CConf, subsort of Conf, and a binary function symbol 〈 , 〉c :
CId × CIntState → CConf. We use X as variable of sort CConf. For example, the
term 〈C, CIntState〉c represents a client whose unique identifier is C and whose
internal state is CIntState.

– There is a sort SConf, subsort of Conf, and a binary function symbol 〈 , 〉s :
SId × SIntState → SConf. We use Y as variable of sort SConf.

We shall assume that P ensures that the operator ( , ) : MsgCnts × MsgCnts →
MsgCnts is a free constructor and that the operator ; : Conf × Conf → Conf is a free
constructor modulo associativity, commutativity and identity of null.

We distinguish ground terms that represent configurations possibly reachable in a
protocol execution. The reachable configurations consist of a multiset of messages,
client states and server states. Furthermore, each client and server is represented by
a unique term. The set of good configurations is defined inductively as follows.

– null is a good configuration.
– If Conf is a good configuration and B is a multiset of messages then Conf; B is a

good configuration.
– If Conf is a good configuration, C and CIntState are ground terms of sort CId

and CIntState respectively, then Conf; 〈C, CIntState〉c is a good configuration
provided Conf does not have any subterm for the form 〈C, CIntState′〉c for some
CIntState′.

– If Conf is a good configuration, S and SIntState are ground terms of sort SId and
SIntState respectively then Conf; 〈S, SIntState〉S is a good configuration provided
Conf does not have any subterm of the form 〈S, SIntState′〉s for some SIntState′.

The set of good configurations shall henceforth be called GoodConf. The execution of
the protocol theory is given by a transition relation →P . Given two good configurations
Conf1 and Conf2, we write Conf1 →P Conf2 iff Conf2 can be obtained from Conf1
by a one-step rewrite with a rule in RP .

For example, the configuration 〈C, CIntState〉; 〈S, SIntState〉; (to S, m from C)
represents a configuration in which a client C has sent a message m intended for server
S. If the server reads the message m and changes its internal state to SIntState′ then
we shall have 〈C, CIntState〉; (to S, m from C); 〈S, SIntState〉 →P 〈C, CIntState〉;
〈S, SIntState′〉.
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4 Cookie Wrapper and Its Preservation Properties

Given the underlying protocol theory P = (ΣP , EP , RP), the cookie wrapper is de-
fined as a theory transformation P 
→ W [P ]. The theory W [P ] = (ΣW[P], EW[P]
, RW[P]) extends P and is constructed as follows. The signature ΣW[P] extends ΣP
with the following new sorts:

1. There is a sort CStoredCookiePair along with a binary function symbol ( , ) :
SId × Cookie → CStoredCookiePair. Intuitively, the pair (S, k) will be stored by
the client wrapper and it uses cookie k when sending requests to server S.

2. There is a sort CStoredCookies for the set of cookie pairs stored at the client
site. There is a constant ∅ which stands for the empty set, along with a function
symbol { } : CStoredCookiePair → CStoredCookies that make a term of sort
CStoredCookiePair into a set and a function symbol ∪ that stands for the union op-
erator. For example, the set {(S, k)}∪{(S′, k′)} stored at client site C means that the
client C shall use the cookies k and k′ while sending messages to S and S′ respec-
tively. There is also a binary function symbol SIn : SId×CStoredCookies → Bool.
The function SIn(S, CPc) returns true, if ∃k s.t. (S, k) ∈ CPc and false otherwise.
For example, the function SIn(S1, {(S, k)} ∪ {(S′, k′)}) returns true if and only if
S1 is either S or S′.

3. There are sorts SStoredCookiePair and SStoredCookies along with the binary func-
tion CIn : CId × SStoredCookies → Bool for managing the cookies at server side
similar to the ones at the client side.

4. There is a sort WrappedCConf for the wrapped client configuration along with a 4-
ary function symbol [ , , , ]c : CId × CStoredCookies × Msg × CConf →
WrappedCConf. The term [C, CPc, (to S, m from C), X ] stands for the client
wrapper for the client C, where CPc is the set of cookie pairs stored at client C,
m is a message (destined for server S) that is stored while a connection to S is
being established, and X is the underlying protocol configuration for the client C,
together with messages sent by C or addressed to C.

5. There is a sort WrappedSConf along with a 4-ary function symbol [ , , , ]s :
SId × SStoredCookies × Seed × SConf → WrappedSConf for wrapped server
configurations.

6. The sorts WrappedSConf and WrappedCConf are subsorts of Conf.

The set EW[P] extends EP with equations required in the definition of new sorts. The
set RW[P] extends RP by adding new rules for the wrapper which are given in Table 1
and discussed below.

The client wrapper rule ConnectReq allows the wrapper to initiate a connection
request to the server S if the connection is not already established and the underlying
client wants to send a message M to S. The message M is held until the connection
is established. The rule SetCookie, triggered upon receiving a cookie from S, allows
the wrapper to complete the connection and release M . The cookie is stored by the
wrapper and the rule MsgToServer ensures that all future service requests to S contain
this cookie. The rule AcceptReply allows the wrapper to forward any future replies
from S to the underlying client.
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Table 1. Cookie Wrapper Rewrite Rules

Client Wrapper Rules.
ConnectReq: [C ,CPc, null, (to S , m from C );X ]c → [C ,CPc, (to S , m from C ),X ]c;

(to S , connect from C ) if SIn(S ,CPc) = false
SetCookie: (to C , k from S); [C , CPc, (to S ,m from C ) ,X ]c →

(to S , (k , m) from C ); [C , {(S , k)} ∪ CPc, null,X ]c
if SIn(S ,CPc) = false

MsgToServer: [C , {(S , k)} ∪ CPc, null, (to S ,m from C );X ]c →
[C , {(S , k)} ∪ CPc, null,X ]c; (to S , (k ,m) from C )

AcceptReply: (to C ,m1 from S); [C , CPc,msg ,X ]c →
[C , CPc,msg , (to C ,m1 from S);X ]c if not m1 : Cookie

Service Wrapper Rules.
CookieGeneration: (to S , connect from C ); [S ,CPs, l ,Y ]s → (to C , rand(l) from S)

[S , {(C , rand( l))} ∪ CPs, next(l),Y ]s; if CIn(C ,CPs) = false
ResendCookie: (to S , connect from C ); [S , {(C , k)} ∪ CPs, l ,Y ]s →

[S , {(C , k)} ∪ CPs, l ,Y ]s; (to C , k from S)
ForwardRequest: (to S , (k ,m) from C ); [S , {(C , k)} ∪ CPs, l ,Y ]s →

[S , {(C , k)} ∪ CPs, l , (to S ,m from C ); Y ]s
DropRequest1: (to S , (k ,m) from C ); [S ,CPs, l ,Y ]s →

[S ,CPs, l ,Y ]s if CIn(C ,CPs) = false
DropRequest2: (to S , (k ,m) from C ); [S , {(C , k ′)} ∪ CPs, l ,Y ]s →

[S , {(C , k ′)} ∪ CPs, l ,Y ]s if (k �= k ′)
ForwardReply: [S ,CPs, l , (to C ,m from S);Y ]s → [S ,CPs, l ,Y ]s; (to C ,m from S)

The server wrapper rule CookieGeneration, triggered when a server S receives a
connection request from a client C for the first time, allows S to reply to the request
with a freshly generated cookie. The cookie is stored and resent using the rule Resend-
Cookie in reply to any further connection requests by C. The stored cookie is also used
by rule ForwardRequest, which forwards service requests to S only if accompanied
by the right cookie. The wrapper drops any service requests, if either the cookie mis-
matches or if there is no connection established, by using the rules DropRequest1 and
DropRequest2 respectively. The rule ForwardRequest allows the wrapper to forward
any client request (with the proper cookie) to the underlying server configuration. Fi-
nally, the rule ForwardReply allows the wrapper to forward any reply by its underlying
server configuration to the client.

As in the case of a protocol theory, we need to identify the set of good wrapped con-
figurations which represent the set of reachable configurations of the protocol with the
DoS protection. In order to define good wrapped configurations we shall first
define well-formed unwrapped and wrapped client configurations. A well-formed un-
wrapped client configuration for a client C is a ground term of sort Conf that con-
tains a (unique) client configuration for C as well as messages sent by or sent to C.
A well-formed wrapped client configuration for a client C consists of a ground term of
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sort WrappedCConf which “wraps” a well-formed unwrapped client configuration for
client C. Formally,

Definition: Given a ground term C of sort CId, a well-formed unwrapped client con-
figuration for C is defined recursively as follows;

1. If Cis is a ground term of sort CIntState, then 〈C, Cis〉c is a well-formed un-
wrapped client configuration.

2. If Conf is well-formed unwrapped client configuration for C and m, S are ground
terms of sort MsgCnts and SId respectively, then Conf; (to S, m from C) and
Conf; (to C, m from S) are well-formed unwrapped client configurations.

If C,CPc, S,m are ground terms of the sort CId, CStoredCookies, SId and MsgCnts
respectively, and Conf is a well-formed unwrapped client configuration for C then
[C, CPc, (to S, m from C), Conf]c is a well-formed wrapped client configuration.

The well-formed unwrapped and wrapped server configurations can be defined analo-
gously to their client counterparts.

We can now identify the set of good wrapped configurations which represent possi-
ble reachable configurations of the protocol with the cookie wrapper. A good wrapped
configuration consists of a multiset of messages and well-formed wrapped client and
server configurations with the restriction that any given client or server appears at most
once. For lack of space, we do not provide a formal definition here. The set of good
wrapped configurations shall henceforth be called GoodWrappedConf.

As before, we define the execution of the wrapped protocol by a one-step transition
relation →W[P]⊆ GoodWrappedConf×GoodWrappedConf. Given two good wrapped
configurations W1 and W2, we write W1 →W[P] W2 if W2 can be obtained from W1
by a one-step rewrite with a rule in W [P ]. For example, the good wrapped configuration
[C, ∅, (to S, m from C), X ]c ; (to S, connect from C) ; [S, ∅, 1, Y ]s represents a config-
uration in which the client wrapper for C has sent a connect request to the server S. The
server accepts the connect request using the rewrite rule CookieGeneration and hence
we have [C, ∅, (to S, m from C), X ]c; (to S, connect from C); [S, ∅, 1, Y ]s →W[P]
[C, ∅, (to S, m from C), X ]c; (to C, rand(1) from S); [S, {(C, rand(1))} , next(1) ,Y ]s.

We are almost ready to show that each execution of the wrapped protocol can be
stuttering simulated by the unwrapped one. We shall however require one more def-
inition. Consider the server wrapper rules DropRequest1 and DropRequest2. The
server wrapper drops service requests if the cookie attached to the request mismatches
the cookie stored at its site. This is not reflected in the underlying protocol as there is no
such check of the service requests. However, if we consider protocols in the presence
of a lossy environment, we can mimic the dropping of these requests by a message loss.

Given the equational theory M = (ΣM, EM), a lossy environment is defined as the
rewrite-theory L = (ΣL, EL, RL), where ΣL = ΣM, EL = EM and RL consists of
the single rewrite rule: (to id1, m from id2) → null. Similar to the way we have defined
→P over GoodConf and →W[P] over GoodWrappedConf, we can define the transition
relations →P∪L over GoodConf and →W[P]∪L over GoodWrappedConf.
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4.1 Simulation

We shall show that the safety properties of the underlying protocol are preserved when
we add the cookie-based DoS protection wrapper by giving a stuttering simulation map
Hfgt: GoodWrappedConf → GoodConf between the set of good wrapped configura-
tions GoodWrappedConf and the set of good configurations GoodConf.

The key idea in the construction of the simulation map Hfgt is that the connect
requests and messages with cookies are used only by the DoS wrappers, and are not
observed by the underlying protocols. The simulation map uses the auxiliary function h
(given below), which maps a multiset of messages onto another multiset of messages by
essentially forgetting all messages whose contents are only cookies or connect requests.
Furthermore, in case the message consists of a cookie as the first part of the contents,
the map h also forgets the cookie part. Formally,

(a) h((to id1, k from id2)) = null
(b) h((to id1, (k , m) from id2)) = (to id1, m from id2)
(c) h((to id1, connect from id2)) = null
(d) h(M) = M if M is not (a), (b) or (c)
(e) h(M ; X) = h(M) ; h(X)

Please note that we should read the above equations as working on equivalence classes
of messages. For example, the equation h((to id1, k from id2)) = null means that any
message which can be proved equal to (to id1, k from id2) (using the set of equations
Ep) also gets mapped to null. The well-definedness of equations will follow from the
fact that the function ( , ) : MsgCnts × MsgCnts → MsgCnts is a free constructor
and the function ; : Conf × Conf → Conf is a free constructor modulo associativity,
commutativity and identity of null.

We are now ready to define our simulation map Hfgt. Please note that our descrip-
tion of GoodWrappedConf implies that the good wrapped configurations are multisets
which contain well-formed wrapped client configurations, well-formed wrapped server
configurations, and a multiset of messages. The function Hfgt “unwraps” the client and
server configurations, and maps the multisets of messages B to h(B). The messages
that are held in the client wrapper waiting for the server reply are “released”.

Definition: Given the set of good configurations GoodConf and good wrapped config-
urations GoodWrappedConf, the function Hfgt: GoodWrappedConf → GoodConf is
defined as follows.

Hfgt ( [C1, CP 1
c , M1, X1

c ]c; . . . ; [Cq, CP q
c , M q, Xq

c ]c;
[S1, CP 1

s , l1, X1
s ]s; . . . ; [Sr, CP r

s , lr, Xr
s ]s; B) =

X1
c , . . . Xq

c ; X1
s , . . . Xr

s ; h(B); M1; . . . ; . . .M q

For example, the configuration [C, ∅, (to S, m from C), X ]c; (to S, connect from C) ;
[S, ∅, 1, Y ]s in which the client wrapper for C has sent a connect request to the server
S gets mapped by Hfgt to X ; (to S, m from C); Y .

Please recall that the transition systems (GoodConf, →P) and (GoodWrappedConf ,
→W[P]) describe the evolution of unwrapped and wrapped protocol configurations re-
spectively. In order to talk about safety properties, we need to define Kripke structures.
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Towards this end, we shall assume that there is a set of propositions AP and a labeling
function LP : GoodConf → 2AP which labels the good configurations of the underly-
ing protocol.1

Theorem 1 (Stuttering simulation and safety preservation). Let P be a protocol
rewrite theory and let W [P ] be the rewrite theory obtained by adding the cookie wrap-
per. Let L be the rewrite theory of a lossy environment. Let AP∪L=(GoodConf, →P∪L,
LP∪L) be the Kripke structure generated from the good configurations of P ∪ L and
AW[P]∪L = (GoodWrappedConf, →W[P]∪L, LW[P]∪L) be the Kripke structure gener-
ated from the good wrapped configurations of W [P ] ∪ L such that LW[P]∪L =Hfgt

◦LP∪L.
Then {(W, Hfgt (W ))|W ∈ GoodWrappedConf} is a stuttering simulation. Fur-

thermore, given a Safety\© formula ψ and any W ∈ AW[P]∪L,

Hfgt (W ) |=AP∪L ψ ⇒ W |=AW[P]∪L ψ.

Proof. (Sketch.) We have to show that if W1 →W[P]∪L W2 then it is matched by a
stuttering transition of Hfgt (W1).

The transition W1 →W[P]∪L W2 can be obtained from one of the three theories: (i)
a one-step application of a rewrite rule in the set RP of the underlying protocol theory,
(ii) an application of the new transition rules in RW[P ], and (iii) an application of the
message drop rule in L. In the first and third cases, the transition is trivially matched. For
the second case, the rules ConnectReq, MsgToServer, SetCookie, AcceptReply,
ResendCookie, ForwardRequest, CookieGeneration and ForwardReply can be
shown to stutter.

The more interesting cases are the rules DropRequest1 and DropRequest2. In
these cases the server wrapper drops messages if the cookies mismatch (or the server
doesn’t have any cookie corresponding to the client). This is simulated by a message
loss transition of the environment.

Formally, if W2 is obtained from W1 by the application of either DropRequest1
or DropRequest2, then the multiset W1 contains a server configuration [S , CPs, l ,
SConf ]s and a message t1 = (to S , (k , m) from C ). Furthermore, (C , k) is not in
the set CPs. The wrapped configuration W2 is obtained from W1 by replacing t1 by
null. By definition, W1 = W ′; t1, W2 = W ′, Hfgt (W1) =Hfgt (W ′); Hfgt (t1) and
Hfgt (W2) =Hfgt (W ′). Now Hfgt (t1) is a message. Due to the message loss rule in
L, we get Hfgt (W1) →P∪LHfgt (W2). ��

Please note that, due to the absence of an intruder, this result doesn’t apply to cryp-
tographic security properties of the protocol. However, it is still useful as we may be
concerned with other correctness properties of the protocol expressed as safety proper-
ties. This theorem ensures that any such properties regarding the protocol are still valid
when we apply the cookie wrapper.

1 Such atomic propositions and labeling function can, for example, be equationally defined in a
conservative (”protecting”) extension of the protocol theory P (see for e.g., [9]).
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5 Security with a Man-in-the-Middle Intruder

The standard assumptions of a MitM model give the intruder the ability to intercept
messages, store messages, and send messages on the network. It also has the ability to
apply cryptographic functions available to the protocol ‘users’ (for instance decrypting
an encrypted message using a key it already knows). We now give the rewrite theory
for a Dolev-Yao intruder, a common MitM model, and later prove a stuttering sim-
ulation between a protocol and its cookie-based wrapped version, in the presence of
this intruder, ensuring the preservation of safety properties. Please note that the Dolev-
Yao intruder considered herein is parametrized by an equational theory which implies
that our preservation result also applies to safety properties in the presence of an in-
truder that can exploit algebraic properties of the constructs (such as xor and modular
exponentiation) used in protocol messages.

5.1 Rewrite Theory for the Dolev-Yao Intruder

Given the equational theory M = (ΣM, EM), the capabilities of the Dolev-Yao in-
truder are defined in terms of a rewrite theory I = (ΣI , EI , RI). The signature ΣI
extends ΣM and the equations EI extend EM, with the following additional sorts and
equations (recall that we already have defined sorts Conf, MsgCnts and Seed as well as
symbols next, rand, Rnd in the message equational theory M).

– There is sort SetMsgCnts along with a constant null of sort SetMsgCnts. The
sort MsgCnts is a subsort of SetMsgCnts. The sort SetMsgCnts stands intuitively
for a set of terms of the sort MsgCnts. There is a binary function symbol ; :
SetMsgCnts × SetMsgCnts → SetMsgCnts which intuitively stands for set union.

– There is a sort IntruderKnowledge, subsort of Conf, along with a unary function
symbol [ ]i : SetMsgCnts → IntruderKnowledge. Intuitively, the term [X ]i stands
for the intruder’s knowledge, i.e., the intruder knows the set of terms X . For exam-
ple, the term [key, m, enc(key, m)]i represents an intruder who knows a plain-text
message m, a key key and the encryption of m under the key key.

– There is a set of function symbols F which represent the cryptographic function-
ality available to the intruder. F is assumed to contain at least the 0-ary function
symbol connect, and the unary function symbol Rnd : Seed → MsgCnts which
satisfies the equation Rnd(l) = (next(l), rand(l)) as before.

The rewrite rules RI given in Table 2 describe the actions that the Dolev-Yao intruder
can perform. The set EI contains the equations EM, equations that make SetMsgCnts
a set, and the equation Coupling-Decoupling given in Table 2. Furthermore, EI may
contain any equations that express the algebraic properties of functions in F .

The equation Coupling-Decoupling allows the intruder to decompose a pair into
its parts and allows pairs to be formed using two terms of sort MsgCnts. The rule
MsgCreation allows the intruder to send messages. The rule MsgInterception allows
the intruder to intercept messages, and the rule MsgDrop allows the intruder to drop
a message without storing any knowledge about its contents. Finally, the rule
CryptoFunctionality allows the intruder to compute the cryptographic functions f ∈ F .
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Table 2. Dolev-Yao Equations and Rules

Equation.
Coupling-Decoupling [(m1,m2);Y ]i = [m1;m2;Y ]i

Rewrite rules.

MsgCreation : [m; id1; id2; Y ]i → [m; id1; id2;Y ]i; (to id1,m from id)
MsgInterception: [Y ]i; (to id1,m from id) → [m;Y ]i
MsgDrop: [Y ]i; (to id1,m from id) → [Y ]i
CryptoFunctionality: [m1; . . . ;mn;Y ]i → [f(m1, . . . , mn);m1; . . . ;mn;Y ]i if f ∈ F

Please note that the Dolev-Yao intruder is powerful enough to exploit any algebraic
properties specified in the equations EI .

P ∪ I and W [P ] ∪ I represent the rewrite-theories for the protocol and cookie-
wrapped version of the protocol extended by the Dolev-Yao intruder. Analogous to
GoodConf and GoodWrappedConf defined in Section 3, we represent reachable con-
figurations in these extended protocols by using sets GoodExtConf and
GoodExtWrappedConf. Intuitively, an element of GoodExtConf stands for a possible
reachable configuration of the unwrapped protocol; and is a ground term of sort Conf
that represents, client and server configurations, the messages on the network, and in-
truder knowledge represented by a term [I]i of sort IntruderKnowledge. We assume
that the identifies of all clients and servers are included in the knowledge of the intruder.
Similarly, an element of GoodExtWrappedConf represents a reachable configuration of
the wrapped protocol in the presence of the Dolev-Yao intruder, again represented by a
term of sort IntruderKnowledge. Furthermore, we shall require that the cookie-stores in
the client, server wrappers are “well-formed”. That is, the cookie-stores of each client,
server wrappers contain a multiset of cookie pairs of the type (Id, k), where k is a
ground term of sort Cookie. We shall also require that the seed in each server is of the
form, l = nextn(1), i.e., n successive applications of the function next on constant 1.

5.2 Simulation

We shall now show that the safety properties of a protocol in the presence of the Dolev-
Yao intruder are preserved when we add the cookie-based DoS protection by exhibit-
ing a stuttering simulation HISim: GoodExtWrappedConf → GoodExtConf between
the set of good extended configurations GoodExtConf and the set of good extended
wrapped configurations GoodExtWrappedConf.

Please note that the simulation map Hfgt used in Theorem 1, which simply drops
cookies from messages, will not suffice for our purpose. This is because we need to
simulate all the actions that the intruder can do when cookie-based DoS protection is
being used. In particular, the intruder in the wrapped theory (say Iw represented by a
ground term of sort IntruderKnowledge) can intercept messages with cookies and then
generate new messages with the intercepted cookies. For example, Iw can embed the
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intercepted cookie within some encrypted message. The intruder in the unwrapped the-
ory (say Iu, a ground term of sort IntruderKnowledge), however does not have access
to these cookies, since there is no cookie generation by the server in the unwrapped pro-
tocol. However, the intruder Iu can use its cryptographic functionality Rnd to generate
cookies, which allows us to simulate all of Iw’s transitions.

The simulation map, HISim, is defined using four auxiliary functions. The first aux-
iliary function, h, is the same as the one defined earlier in Section 4. The second func-
tion, ck, maps a multiset of messages to a term of sort SetMsgCnts. Given a message
M , the function ck picks out a cookie if either the message contents of M is just the
cookie or if the message contents of M is a pair, the first component of which is a
cookie. The other functions ckc and cks similarly collect cookies in CStoredCookies
and SStoredCookies by picking out the cookie part of every cookie pair stored in
CStoredCookies, SStoredCookies. They are formally defined as follows:

(a) ck((to id1, k from id2)) = k
(b) ck((to id1, (k , m) from id2)) = k
(c) ck(M) = null if M is not (a) or (b)
(d) ck(M ; X) = ck(M) ; ck(X)
(e) ckc(∅) = null
(f) ckc({(C , k)} ∪ CP c) = {k} ∪ ckc(CP c)
(g) cks(∅) = null
(h) cks({(S , k)} ∪ CPs) = {k} ∪ cks(CPs)

We are now ready to define our simulation map HISim. Please note that our descrip-
tion of GoodExtWrappedConf implies that the good extended wrapped configurations
are multisets which contain well-formed wrapped client configurations, well-formed
wrapped server configurations, an intruder state, and a multiset of messages. The func-
tion HISim “unwraps” the client and server configurations, and maps the multiset of
messages B to h(B). The messages that are held in the client wrapper waiting for the
server reply are “released”. Finally, the intruder state in HISim (W ) has more facts
than the intruder state in W , which allows it to mimic all actions of the intruder in W .
In addition to all the facts available to the intruder in W , HISim (W ) also has cook-
ies stored at client and server wrappers and in messages over the network. Please note
that we are not giving the intruder access to the storage at these wrappers (there are no
wrappers in HISim (w)). The condition is trivially satisfied at an “initial” state where
the cookie stores are empty. The definition allows us to avoid an induction on reachable
configurations. Furthermore, the intruder also has all the seeds that the server wrapper
has, along with all the seeds that the server might have used in the past.

Definition: Given the set of good extended configurations GoodExtConf and the set of
good extended wrapped configurations GoodExtWrappedConf; the function HISim:
GoodExtWrappedConf → GoodExtConf is defined as follows.

HISim ( [C1, CP 1
c , M1, X1

c ]c; . . . ; [Cq, CP q
c , M q, Xq

c ]c;
[S1, CP 1

s , l1, X1
s ]s; . . . ; [Sr, CP r

s , lr, Xr
s ]s; [Y ]i; B) =

X1
c , . . . Xq

c ; X1
s , . . . Xr

s ; h(B); M1; . . . ; . . .M q

[Y ; 1; next(1); next2(1) . . . ; l1; . . . ; 1; next(1); next2(1) . . . lr;
ckc(CP 1

c ); . . . ; ckc(CP q
c ); cks(CP 1

s ); . . . ; cks(CP r
s ); ck(B)]i.
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For example, consider the configuration Conf = [C, {S, k}, null, Xc]c; [S, {(C, k)},
next(1), Xs]s; (to S, (k, m) from C) ; [C, S]i in which the client has established a con-
nection with the server S (with cookie k) and has sent a service request. The intruder has
the identities of the client and the server. By definition, HISim “unwraps” the client,
the server, the service request, and stores the cookie k in the intruder memory. Formally,
HISim (Conf) = Xc; Xs; (to S, m from C); [C, S, 1, next(1), k]i.

We have the second result of the paper.

Theorem 2. Let P ∪ I be the rewrite theory for the protocol P in the presence of a
Dolev-Yao intruder, and AP∪I = (GoodExtConf, →P∪I , LP∪I) be the Kripke struc-
ture generated from the good extended configurations. Let W [P ]∪I be the rewrite the-
ory for the cookie wrapped protocol W [P ] in the presence of a Dolev-Yao intruder, and
AW[P]∪I = (GoodExtWrappedConf, →W[P]∪I , LW[P]∪I) be the Kripke struture gen-
erated from the good extended wrapped configurations, such that, LW[P]∪I =HISim

◦LP∪I.
Then for any Safety\© formula ψ and any W ∈ AW[P]∪I ,

HISim (W ) |=AP∪I ψ ⇒ W |=AW[P ]∪I ψ.

Proof. (Sketch.) It suffices to show that {(W, HISim (W ))|W ∈ GoodWrappedConf}
is a stuttering simulation, i.e., whenever, W1 →W[P]∪I W2, then it is matched by a
stuttering transition of HISim (W1).

The transition W1 →W[P]∪I W2 can either be a transition obtained by a one-step
application of a rewrite rule of the underlying protocol theory P , or a transition obtained
by an application of the new transition rules of the wrapper W , or a transition obtained
by an application of the transition rules in the intruder theory. In the first case, the tran-
sition is trivially matched. For the second case, the rules ConnectReq, MsgToServer,
SetCookie, AcceptReply, ResendCookie, ForwardRequest and ForwardReply
can be shown to stutter. The rules DropRequest1, DropRequest2 can be simulated
by the MsgDrop rule of the intruder.

If W2 is obtained from W1 by the application of CookieGeneration resulting in
some server wrapper generating a cookie k, then this step is matched by the intruder
using the its crypto functionality Rnd to generate the same cookie k.

Now, assume that W2 is obtained from W1 by the application of a rule in RI . Please
observe that the set of facts that the intruder possesses in W1 is contained in the set of
facts that the intruder possesses in HISim (W1). Hence, “crypto functionality” can be
simulated exactly. Message creation of M can be simulated by “message creation” of
h(M). Please note that h(M) creation requires less information. The “message inter-
ception” of M is simulated by interception of h(M). The missing information (cookie)
is already in the possession of the intruder in HISim (W1). ��

5.3 Modular Reasoning with Cookies in IKEv2

In this section we describe how the cookie-wrapper can be applied to a practical pro-
tocol vulnerable to a DoS attack. Using the results in this paper, we can show that any
Safety\© properties that have been verified on the original protocol (in the presence
of a Dolev-Yao intruder) still apply to the cookie-wrapper version of the protocol (in
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the presence of a Dolev-Yao intruder). In effect, we get the added benefit of some DoS
protection without having to prove earlier safety properties again.

IPSec is a suite of protocols used to provide authentication and encryption on top of
IP. The Internet Key Exchange (IKE) protocol is a part of the IPSec suite that allows two
communicating parties to, among other things, securely generate session keys as well as
exchange cryptographic parameters. IKEv2 ([23]) is the current version of the protocol.
Since IPSec runs on top of the connectionless protocol UDP, there is no guarantee
that an initiation request for an IKE session from a client has come from a valid IP
address. This creates a DoS vulnerability as an attacker can send a large number of IKE
initiation requests to a server with spoofed IP addresses. In fact, an earlier version of
IKE (IKEv1[21, 28, 33]) was susceptible to this attack and protecting against such an
attack was part of the motivation for IKEv2.

AVISPA ([5]) is an automated tool for verification of Internet protocols and applica-
tions. It has been used to verify various security protocols in the IPSec suite including
the variants of IKEv2. In particular, it has been used to prove the secrecy of session keys
exchanged in the key-exchange sub-protocol (IKEv2-DS[5]) which is vulnerable to a
DoS attack. It follows from our results in this paper that the cookie-enhanced version
of this protocol has the same guarantees.2

6 Related Work

Modular specification and reasoning has attracted a lot of attention in formal analysis
of distributed systems and communication protocols. The advantage of this approach is
to allow verification of individual sub-systems without worrying about all interactions
between different layers. Towards this end, the “onion skin” modular model of actor
reflection has been proposed in [2, 12, 31]. Our formalization of the cookie-based DoS
protection mechanism can be seen as an instance of this formalism in which we are
trying to develop the program we discussed in [3]. Ultimately we would like to be able
to provide a formal modular treatment of protocols like Adaptive Selective Verification
(ASV) based on the shared channel model [19, 24].

The modular framework for reasoning about a stack of protocols for security prop-
erties is less common. The security protocols are generally specified and analyzed in-
dividually. Recently, a modular proof of correctness (under Dolev-Yao assumptions) of
the IEEE 802.11i and TLS suite of protocols was given in [22] using the Protocol Com-
position Logic [13]. Formal analysis of the VoIP protocol stack is carried out in [20]
and the tunnel calculus is used to model security tunnels in stacks in [18]. Finally, there
is a large body of work on compositional reasoning of cryptographic protocols. The
primary focus of this line of research is to show that if some protocol is secure under
the Dolev-Yao assumption of black-box cryptography, then the protocol remains secure
when the black-box cryptographic functions are instantiated with their cryptographic
realizations (see, e.g. [6]). Compositional reasoning is also the technique used in Proto-
col Composition Logic [10, 13], where, the correctness of a single protocol is derived by

2 Note that IKEv2 has its own cookie-based mechanism for prevention of such an attack which
has a slightly different implementation. Therefore, our claim applies to a modular wrapper-
based implementation of cookies.
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proving assertions about individual actions of honest participants. These compositional
reasoning principles focus on safety properties and therefore complement the modular
reasoning methods explored in this paper, which focus on the preservation of safety
properties when DoS protection mechanisms are added.

The availability properties of the cookie-based mechanism is not the focus of our
work, but there are several works in the literature which analyze availability proper-
ties. A general cost-based framework for analyzing protocols for DoS resistance has
been proposed in [29] and is based on the fail-stop model in [17]. DoS-resistance is
stated using an information flow property in a cost-based framework in [25]. Observa-
tion equivalence and a cost-based framework is used in [1] to analyze the availability
properties of the JFK protocol. Other works on formal analysis of availability properties
use branching-time logics [27, 36] and continuous stochastic logic [3].

Finally, we observe that rewriting logic has a well-established tradition in specifica-
tion and analysis of security protocols [8, 11, 14, 32].

7 Conclusions and Future Work

We have proposed a modular approach to both the specification of DoS protection
mechanisms as generic wrappers, and the preservation of safety properties of protocols
when hardened by such wrappers. We have discussed how a cookie-based mechanism
can be specified this way; and how safety properties of the underlying protocol are pre-
served by the cookie wrapper with and without the presence of a Dolev-Yao intruder.

This work represents a step toward capabilities we described in [3]. In that work we
showed how a DoS-hardened protocol could be formally analyzed for its DoS protec-
tion capabilities by examining probabilistic guarantees for selective verification [19], a
DoS protection mechanism based on the use of bandwidth limitations. The current work
shows how to prove invariant properties between the MitM model and a model for DoS
protection. However, the target DoS protection model is non-probabilistic (based on
cookies). A next step along this path is to show this invariance for a system in which the
DoS protection mechanism is probabilistic as in [3]. As an intermediate step, the results
presented here about preservation of safety properties should be extended to preserva-
tion of properties definable in the more general logic ACTL∗ minus the next operator.
Another intermediate step is to more completely formalize a protocol like IKEv2, so
that the results of the paper can be more completely applied. A more ambitious topic
worth investigating is the verification of generic availability properties of a given wrap-
per. That is, given a wrapper W , can we reason about the availability properties that W
will provide for any protocol P under minimal assumption on P? Yet another topic for
future research is the development of automated formal reasoning methods for proving
preservation of a given class of properties of an underlying protocol P when such a
protocol is composed with a given wrapper W .
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Abstract. We analyse the relationship between object-oriented modelling and
session-based, service-oriented modelling, starting from a typical UML Sequence
Diagram and providing a program transformation into a service-oriented model.
We also provide a similar transformation from session-based specifications into
request-response specifications. All transformations are specified in SSCC—
a process calculus for modelling and analysing service-oriented systems—and
proved correct with respect to a suitable form of behavioural equivalence (full
weak bisimilarity). Since the equivalence is proved to be compositional, results
remain valid in arbitrary contexts.

1 Introduction

Web Services include a set of technologies to deploy applications over the Internet,
making them dynamically searchable and composable, allowing great adaptability and
reusability. While nowadays Web Services are one of the main technologies for imple-
menting coordinated behaviours over the web, most of the modelling techniques com-
monly used are still tailored to the object-oriented development style, and only recently
did dedicated development methodologies start emerging. For instance, extensions of
UML [14] for Web Services are under development [21], and dedicated languages such
as WS-BPEL [2] are increasingly popular.

As a contribution to bridge the gap between traditional object-oriented and emerging
service-oriented models, and to allow the reuse of existing tools and techniques, we de-
tail a model transformation procedure from a common object-oriented communication
pattern into a session-based, service-oriented one. Sessions are a paradigm of service
interaction that isolates the communications between two remote partners, making them
safe from interferences. More complex orchestration scenarios are obtained by combin-
ing remote session communications and local communications. The expressive power
of sessions has been shown, e.g., in [3, 4, 8, 11, 12, 19, 20].
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The work presented in this paper builds on top of SSCC [10, 12], a process calculus
based on session communication and featuring service definition and service invocation
as first class constructs. SSCC has been developed within the EU project Sensoria [18],
by adapting previous proposals of calculi for services (such as [3, 6, 13]), while trying to
find the best trade-off between expressiveness and suitability for formal analysis. SSCC
provides dedicated constructs for service definition/invocation, session communication,
and local communication based on streams, the later abstracting operating system local
communication facilities.

We illustrate herein how UML Sequence Diagrams [1] (hereafter referred to as SDs)
can be straightforwardly implemented in SSCC by exploiting suitable macros. While
these macros hide auxiliary local services, making use of services for local commu-
nications is usually not tremendously efficient. We thus show how to transform these
models into models where local communications are realised by streams, resulting in
systems with a more session-oriented flavour. However, while sessions have proved
quite useful for system modelling, current Web Service technologies (e.g., WSDL [9]
and WS-BPEL [2]) do not fully support them. In fact, complex interactions are usually
based on the simpler request and request-response patterns. To bridge this mismatch
we show how to break sessions into request-response sequences, easily implementable
using current technologies.

An important feature of our work is that all transformations are proved correct with
respect to the observational semantics of services. In fact, SSCC is equipped with a
rigorous operational semantics, and with a behavioural theory based on an equivalence
capturing the main aspects of service interaction. We show that our transformations
preserve behavioural equivalence. Since we also prove that this equivalence—weak full
bisimilarity over an early labelled transition system—is a congruence, the behaviour
of every composition built exploiting these services remains unchanged when moving
from the original programs into their transformed versions.

To the best of our knowledge, there are very few studies on weak bisimulations for
service calculi other than SSCC. Bruni et al. present weak bisimulation for a calculus
for multiparty sessions in SOC [5], and they apply it to show that an implementation
of a service is compliant to a more abstract specification. However they do not pro-
vide a general theory or methodology for the transformation as we do. Vieira et al.
discuss strong bisimulation in the realm of the Conversation Calculus [20], a variant of
SCC [3]. They present a congruence result and axioms that express the spatial nature of
their calculus and allow them to prove a normal form lemma. The behavioural theory,
however, is not used in an application, as we do in this paper. Busi et al. study a bisim-
ulation like relation to check conformance between a calculus for orchestration and a
calculus for choreography [7], while we use it to check the correctness of transforma-
tions inside the same calculus. Most of the papers on program transformations (see,
e.g., [15] for a functional language) use program transformations to improve efficiency,
whereas we are more interested in changing the style of the program, while making it
implementable using current technologies. In the context of typed π-calculus, Davide
Sangiorgi uses typed behavioural equivalences to prove a program transformation to
increase concurrency in a system of objects [16].
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The outline of the paper is as follows. The next section introduces SSCC. Then
Section 3 discusses SDs and the corresponding SSCC code. Sections 4 and 5 study
the bisimilarity relation, the former for general processes and the latter concentrating
on sequential sessions. They pave the way for proving, in Section 6, the correctness
of the transformations set forward in Section 3. Finally, Section 7 concludes the paper,
pointing directions for further work.

2 SSCC

The Stream-based Session-Centred Calculus [10, 12] builds on its predecessor SCC [3],
by introducing the ability to model complex orchestration patterns via a dedicated
stream construct. Here we recall its syntax and its operational semantics.

Syntax. Processes use three kinds of identifiers: service names ranged over by a, b, x,
y, . . . , stream names ranged over by f , g, . . . , and process variables ranged over by X ,
Y , . . . . The grammar in Figure 1 defines the syntax of SSCC processes.

P, Q ::= Processes
P |Q Parallel composition | (ν a)P Name restriction

| 0 Terminated process | X Process variable
| rec X.P Recursive process definition | a ⇒ P Service definition
| a ⇐ P Service invocation | v.P Value sending
| (x)P Value reception | stream P as f in Q Stream
| feed v.P Feed the process’ stream | f(x).P Read from a stream

v, w ::= Values
a Service name | unit Unit value

Fig. 1. Syntax of SSCC

The first five cases introduce standard process calculi operators: parallel composi-
tion, restriction (for service names only), the terminated process, and recursion (we
assume recursion guarded by prefixes). We then have two constructs to build services:
definition or provider (a ⇒ P ) and invocation or client (a ⇐ P ). Both are defined by
their name a and protocol P . Service definition and service invocation are symmetric.
Service protocols are built using value sending (v.P ) and receiving ((x)P ), allowing
bidirectional communication between clients and servers. Finally, there are three con-
structs for service orchestration. The stream construct declares a stream f for commu-
nication from P to Q. Process P can insert a value v into the stream using feed v.P ′,
and process Q can read from stream f using f(x).Q′. Notice that stream names cannot
be communicated, thus they model static channels. The rule of thumb concerning com-
munication is the following: service interaction is intended for remote communication;
stream interaction is intended for local communication.

Processes at run-time exploit an extended syntax: the interaction of a service defi-
nition and a service invocation produces an active session with two endpoints, one at
the provider side and the other at the client side. Also, values in the stream are stored
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P, Q ::= . . . as in Figure 1 Runtime processes
| r � P Server session | r � P Client session
| (ν r)P Session restriction | stream P as f = �v in Q Stream with values

Fig. 2. Run-time syntax of SSCC

together with the stream definition, i.e., the stream has buffering capabilities. Let �v (and
sometimes �w) denote a (possibly empty) sequence of values. We introduce a fourth
kind of identifier: session names, ranged over by r, s, . . . , and use n, m, . . . to range
over both session and service names. The grammar in Figure 2 defines the syntax of
run-time processes. The constructor stream P as f in Q in Figure 1 is an abbreviation
for its runtime version stream P as f = 〈〉 in Q.

In order to define the operational semantics we introduce a few auxiliary notations.
We use r �� P to denote one of r � P and r � P , and we assume that when multiple ��
appear in the same rule they are instantiated in the same direction (� or �), and that if
�� also appears, then it denotes the opposite direction.

Streams are considered ordered, acting as queues. We write w :: �v for the stream
obtained by enqueuing w to �v, and �v :: w for a stream from which w can be dequeued.
In the latter case �v is what remains after dequeuing w.

Operational Semantics. Let Set(�w) = {w1, . . . , wn}, when �w = w1 · · · wn (n ≥ 0).
As for bindings, name x is bound in (x)P and in f(x).P ; name n is bound in (ν n)P ;
stream f is bound in stream P as f = �v in Q with scope Q; and process variable
X is bound in rec X.P . Notation fn(P ) (respectively bn(P )) denotes the set of free
(respectively bound) names in P , and n(P ) = fn(P ) ∪ bn(P ). We require processes
to have no free process variables. The semantics of SSCC is defined using a labelled
transition system (LTS, for short) in the early style.

Definition 1 (Labelled Transition System). The rules in Figure 3, together with the
symmetric version of rules L-PAR, L-PAR-CLOSE, and L-SESS-COM-CLOSE, induc-
tively define the LTS on processes.

In the LTS we use μ as a metavariable for labels, and extend fn(−), bn(−), and n(−) to
labels. The only bound names in labels are r in service definition activation and service
invocation and a in extrusion labels (conventionally, they are all in parenthesis). Label
↑v denotes sending (the output) value v. Dually, label ↓v is receiving (the input) value
v. We use 
 v to denote one of ↑v or ↓v, and we assume that when multiple 
 v appear
in the same rule they are instantiated in the same direction, and that 
v denotes the
opposite direction.

Continuing with the labels, a⇐ (r) and a⇒ (r) denote respectively the request and
the activation of a service, where a is the name of the service, and r is the name of the
new session to be created. We use a⇔ (r) to denote one of a⇐ (r) or a⇒ (r), and we
assume that when multiple a⇔ (r) appear in the same rule they are instantiated in the
same direction, and that a⇔(r) denotes the opposite direction. Furthermore, label ⇑ v
denotes the feeding of value v into a stream, while label f ⇓v reads value v from stream
f . When an input or an output label crosses a session construct (rule L-SESS-VAL), we
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v.P
↑v−→ P (x)P

↓v−→ P [v/x] feed v.P
⇑v−→ P f(x).P

f⇓v−−→ P [v/x]
(L-SEND, L-RECEIVE, L-FEED, L-READ)

P
μ−→ P ′ μ �=⇑v bn(μ) ∩ (fn(Q) ∪ Set(�w)) = ∅

stream P as f = �w in Q
μ−→ stream P ′ as f = �w in Q

(L-STREAM-PASS-P)

Q
μ−→ Q′ μ �= f ⇓v bn(μ) ∩ (fn(P ) ∪ Set(�w)) = ∅

stream P as f = �w in Q
μ−→ stream P as f = �w in Q′ (L-STREAM-PASS-Q)

P
⇑v−→ P ′

stream P as f = �w in Q
τ−→ stream P ′ as f = v : : �w in Q

(L-STREAM-FEED)

Q
f⇓v−−→ Q′

stream P as f = �w : : v in Q
τ−→ stream P as f = �w in Q′ (L-STREAM-CONS)

r /∈ fn(P )

a ⇐ P
a⇐(r)−−−→ r � P

r /∈ fn(P )

a ⇒ P
a⇒(r)−−−→ r � P

(L-CALL, L-DEF)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P |Q μ−→ P ′|Q
P

	v−→ P ′

r �� P
r��	v−−−→ r �� P ′

(L-PAR, L-SESS-VAL)

P [rec X.P/X ]
μ−→ P ′

rec X.P
μ−→ P ′

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

stream P as f = �w in Q
rτ−→ stream P ′ as f = �w in Q′

(L-REC, L-SESS-COM-STREAM)

P
a⇔(r)−−−→ P ′ Q

a⇔(r)−−−−→ Q′

stream P as f = �w in Q
τ−→ (ν r)stream P ′ as f = �w in Q′ (L-SERV-COM-STREAM)

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

P |Q rτ−→ P ′|Q′
P

a⇔(r)−−−→ P ′ Q
a⇔(r)−−−−→ Q′

P |Q τ−→ (ν r)(P ′|Q′)
(L-SESS-COM-PAR, L-SERV-COM-PAR)

P
μ−→ P ′ n /∈ n(μ)

(ν n)P
μ−→ (ν n)P ′

P
rτ−→ P ′

(ν r)P
τ−→ (ν r)P ′

P
μ−→ P ′ μ �=� v r /∈ bn(μ)

r �� P
μ−→ r �� P ′

(L-RES,L-SESS-RES, L-SESS-PASS)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q)

P |Q rτ−→ (ν v)(P ′|Q′)

P
μ−→ P ′ μ ∈ {↑a, r ��↑a, ⇑a}

(ν a)P
(a)μ−−−→ P ′

(L-PAR-CLOSE, L-EXTR)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q) ∪ Set(�w)

stream P as f = �w in Q
rτ−→ (ν v)stream P ′ as f = �w in Q′ (L-SESS-COM-CLOSE)

P
(v)⇑v−−−→ P ′ v /∈ fn(Q) ∪ Set(�w)

stream P as f = �w in Q
τ−→ (ν v)stream P ′ as f = v : : �w in Q

(L-FEED-CLOSE)

Fig. 3. Labelled Transition System
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P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)
(S-NIL, S-COMM, S-ASSOC)

(ν n)P |Q ≡ (ν n)(P |Q) if n /∈ fn(Q) r �� (ν a)P ≡ (ν a)(r �� P )
(S-EXTR-PAR, S-EXTR-SESS)

stream (ν a)P as f = �v in Q ≡ (ν a)(stream P as f = �v in Q) if a /∈ fn(Q) ∪ Set(�v)
(S-EXTR-STREAML)

stream P as f = �v in (ν a)Q ≡ (ν a)(streamP as f = �v in Q) if a /∈ fn(P ) ∪ Set(�v)
(S-EXTR-STREAMR)

(ν n)(ν m)P ≡ (ν m)(ν n)P (ν a)0 ≡ 0 rec X.P ≡ P [rec X.P/X]
(S-SWAP, S-COLLECT, S-REC)

Fig. 4. Structural congruence

add to the label the name of the session and whether it is a server or a client session (for
example, ↓v may become r � ↓v).

The label denoting a conversation step in a free session r is rτ , and if the value
passed in the session channel is private, it remains private in the resulting process; rules
L-PAR-CLOSE and L-SESS-COM-CLOSE accomplish this using the usual π-calculus
approach. A label τ is obtained only when r is restricted (rule L-SESS-RES). Thus a
τ action can be obtained in four cases: a communication inside a restricted session,
a service invocation, a feed or a read from a stream. Notice also that we have two
contexts causing interaction: parallel composition and stream. Finally, bound actions,
(a)μ, represent the extrusion of a in their respective free counterparts μ.

This LTS is slightly different from its original version [12]. In particular it does
not exploit structural congruence, in order to simplify some proofs. The two LTSs are,
however, equivalent up to the structural congruence relation (inductively defined by the
rules in Figure 4). Since we show in Lemma 2 that structural congruence is included
in strong full bisimilarity, all our results are valid also for the original LTS. A detailed
equivalence proof can be found in a technical report [10].

Some processes, such as r � r � P , can be written using the run-time syntax, but
they are not reachable from processes in the basic syntax of Figure 1. We consider these
processes ill-formed, and therefore make the following assumption, which is necessary
for most results.

Assumption 1. Henceforth, all processes under consideration are either in the syntax
of Figure 1, or can be obtained from these via LTS transitions.

3 Common Sequence Diagram Patterns

UML Sequence Diagrams [1] describe the exchange of messages among the com-
ponents in a complex system. We present a typical SD, and then describe how the
same behaviour can be modelled first in a more session-centred style, and then in a
request-response style suitable for implementation. Diagrams for the initial SD and
those describing the result of each transformation are in Figures 5 to 7.
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: A : B : C

�1: w

�2: w

� 3: w’

�4: v

� 5: v’

� 6: v’

: A

rA

: B

rB sB

: C

sC

�1: w

���
1.1: w

�2: w

� 3: w’

�4: v

� 5: v’

���
5.1: v’

� 6: v’

Fig. 5. Sequence diagram communication pattern: object-centred and session-centred view

Object-Oriented View. The SD on the left of Figure 5 describes a very common pat-
tern appearing in scenarios involving (at least) three partners. The description of the
communication pattern is as follows.

Object B receives from object A the value w and forwards it to object C. After
receiving the value, object C answers with a value w’. Object B replies with v
and finally object C replies with v’. Now object B forwards it to object A.

Notice that by “Object B receives from object A the value w” we mean that object A
invokes a method in object B passing the value w.

Session-Centred View. Assume that the components of this abstract communication
scenario are clients and servers of a service-oriented architecture, and further assume
that communication happens via sessions. We refine the diagram by incorporating in-
formation about the running sessions, in the diagram on the right of Figure 5, where
the slanted arrows mean message passing between sessions1. An instance of service
B (let us call these instances participants) has a session r running with an instance of
service A and another session s running with an instance of service C. Since sessions
involve two partners, a session r between instances of services A and B has two sides—
called endpoints, rA at the instance of service A and rB at the instance of service B. The
communication pattern is now like this:

Participant B receives in session rB the value w, passes it to its part of the
session with participant C (sB), and then forwards the value through this session
to C. Inside the same session C sends w’ to B, B sends v to C and C sends v’ to
B. Participant B now forwards the value v’ back to A, passing it from session s
to session r.

In addition to the normal constructs in the calculus, to model object-oriented sys-
tems (that do not follow the laws of session communication), it is useful to have two

1 Since to the best of our knowledge no extension of SDs with session information exists, we
introduce a notation for it.
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Fig. 6. Sequence diagram: subsession communicating via message passing and via a stream

constructs enabling arbitrary message passing. These can be expressed in SSCC by
exploiting fresh auxiliary services.

b ⇑ 〈v1, ..., vn〉.P � stream b ⇐ v1...vn.feed unit as f in f(v).P

b ⇓ (x1, ..., xn)P � stream b ⇒ (z1)...(zn).feed z1...feed zn as f

in f(x1)...f(xn).P

where name v and stream f are not used in P .
The diagram on the right of Figure 5 is directly implemented in SSCC as

SC � (ν b, c) ( A | B | C ),

where

A � b ⇐ w.(y)P, B � (ν b1, b2) ( B1 | B2 ), and C � c ⇒ (x)w′.(y)v′.S,

with

B1 � b ⇒ (x)b1 ⇑ x.b2 ⇓ (y)y.Q, and B2 � c ⇐ b1 ⇓ (x)x.(z)v.(y)b2 ⇑ y.R.

The process above, although not deterministic (its first step may either be the invocation
of service b or of service c), is confluent, and it is easy to check that its behaviour reflects
the one described on the right of Figure 5.

A First Optimisation. When the participant B has the value sent by A, it may imme-
diately send it to participant C, calling it (and thus opening a subsession). One simply
has to perform a “local” transformation on B. The resulting diagram is on the left of
Figure 6, and it is implemented in SSCC as process SC′, where we denote by E the
new instance of B.

SC′ � (ν b, c) ( A | E | C ) where

E � b ⇒ (x)(ν b1)(c ⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

Still, E (which replaces B from the previous version) needs to pass the value sent by
C in their session, to its session with A, and a communication based on an auxiliary
service is used. Notice that the process SC′ is deterministic.
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: A
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: B

rB

sB
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�
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Fig. 7. Sequence diagram communication pattern: using subsessions and continuations

A Second Optimisation. The transfer of a value from a subsession to its parent session
is, in the previous implementation, not straightforward, since it requires the use of lo-
cal services. In fact, as discussed in [12], it is more convenient to use a trans-session
construct like stream. Now participant F (the initial B), passes the value received from
C from the subsession to the main session using another communication construct—
a stream—instead of using a local service. This is implemented in process SC′′, also
deterministic.

SC′′ � (ν b, c) ( A | F | C )

where the new code for B (now F) is as follows.

F � b ⇒ (x)(stream c ⇐ x.(z)v.(y)feed y.R as f in f(y).y.Q)

The corresponding diagram is on the right of Figure 6. The two diagrams in Figure 6
are quite similar: the one on the left uses message passing (denoted by the straight
arrow from the inner to the outer session), whereas the one on the right uses stream
communication (described by the curved arrow).

Implementing the Diagram. The previous diagram, and the corresponding SSCC pro-
cess, model the pattern at hand in a service-oriented session-based style. However, cur-
rent Web Service technologies do not provide support for a complex mechanism such as
sessions, considering instead request (one-way communication) and request-response
(two one-way communications in opposite directions) only—see, e.g., the definition of
WSDL [9]. It is easy to see that these are particular cases of sessions, where protocols
are composed respectively by one output or by one output followed by one input. The
new communication pattern is described in Figure 7, and reads as follows.

Participant B receives in session rB the value w, and then forwards it through
its session with participant C (sB) to C itself. Inside the same session C sends to
B value w’ together with the name of a freshly generated service C’ to continue
the conversation on. Now B invokes C’ creating a new subsession s′ of session s
and, inside s′, B sends v and receives as answer v’. Participant B now forwards
the value v’ back to A, passing it from session s′ to session r.



68 L. Cruz-Filipe et al.

This pattern can be implemented as:

SC′′′ � (ν b, c) ( A | G | D )

where the new codes for B (now G) and C (now D) are below. To write these new codes
we need to consider polyadic inputs and outputs, denoted respectively by (x1, . . . , xn)
and 〈v1, . . . , vn〉. They can be easily accommodated in the theory.

G � b ⇒ (x)(stream c ⇐ x.(z, c′)c′ ⇐ v.(y)feed y.R as f in f(y).y.Q)

D � c ⇒ (x)(ν c′)〈w′, c′〉.c′ ⇒ (y)v′.S

Naturally, one asks whether the transformations of SC into SC′, SC′′ and finally
SC′′′ are correct, not changing the observable behaviour of processes. The next sections
introduce suitable tools to give a positive answer to this question in Section 6.

4 Bisimilarity in SSCC

We study the usual two notions of bisimilarity, strong and weak. Both are non-input
congruences in the class of SSCC processes. One can get a congruence by considering
(strong or weak) full bisimilarity, i.e., by closing bisimilarity with respect to service
name substitutions (notice that there is no reason to close with respect to session or
stream names, since no substitutions are performed on them). Although the general
strategy is the same as for the π-calculus, the proof techniques themselves differ sig-
nificantly. Herein we only present the main results. Detailed proofs can be found in a
technical report [10].

Section 2 defines a labelled transition system (LTS) in the early style; we now study
the notions of bisimilarity known in the literature as ground and full. The reason for
choosing these is simple: we are interested in a compositional equivalence, i.e., equiva-
lent services should behave the same even if used as parts of complex systems. There-
fore, we choose the simplest possible setting where this may happen. It is well-known
already from the π-calculus that ground bisimilarity over a late LTS is not preserved
by parallel composition, requiring the more demanding notions of late and early bisim-
ilarity (which in turn are not preserved by input prefix, since they are not closed under
general substitutions). Not surprisingly, this fact also occurs in SSCC: ground bisim-
ilarity is a non-input congruence. Sangiorgi and Walker present counter-examples for
the preservation of both strong and weak bisimilarities in the synchronous π-calculus
without sum and match [17, pp. 224–225]. Of these, the first can be easily translated to
our language, using services to mimic π’s input and output constructors; for the weak
case, the counter-example is not so directly transposable, but it can still be adapted.

Strong Bisimilarity. The relation, hereafter referred to simply as “bisimilarity”, is de-
fined as usual over the class of all processes.

Definition 2 (Strong Bisimilarity). A symmetric binary relation R on processes is a
(strong) bisimulation if, for any processes P , Q such that PRQ, if P

α−→ P ′ with
bn(α) ∩ fn(Q) = ∅, then there exists Q′ such that Q

α−→ Q′ and P ′ R Q′. (Strong)
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bisimilarity ∼ is the largest bisimulation. Two processes P and Q are (strong) bisimilar
if P ∼ Q.

Also, a full bisimulation is a bisimulation closed under service name substitutions,
and we call full bisimilarity ∼f the largest full bisimulation.

Since bisimilarity is not closed under service name substitutions, ∼f �∼.
Notice that bisimilarity (respectively full bisimilarity) can be obtained as the union

of all bisimulations (respectively full bisimulations) or as a fixed-point of a suitable
monotonic operator; moreover, as expected, structurally congruent processes (Figure 4)
are bisimilar.

Lemma 1 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If P
α−→ P ′,

then Q
α−→ Q′ with P ′ ≡ Q′, and vice-versa.

Lemma 2. Structurally congruent processes are full bisimilar.

As in the π-calculus, bisimilarity is a non-input congruence, i.e., it is closed under
contexts different from value reception and input from stream.

Theorem 1. Bisimilarity is a non-input congruence.

Corollary 1. Full bisimilarity is a congruence.

Weak Bisimilarity. As usual, we introduce some abbreviations: P
τ=⇒ Q iff P

τ−→
· · · τ−→ Q and P

α=⇒ Q iff P
τ=⇒ α−→ τ=⇒ Q for α �= τ . In particular, P

τ=⇒ P for every
process P .

Definition 3. A symmetric binary relation R on processes is a weak bisimulation if, for
any processes P , Q such that PRQ, if P

α=⇒ P ′ with bn(α) ∩ fn(Q) = ∅, then there
exists a process Q′ such that Q

α=⇒ Q′ and P ′ R Q′. Weak bisimilarity ≈ is the largest
weak bisimulation. Two processes P and Q are said to be weak bisimilar if P ≈ Q.

Also, a full weak bisimulation is a weak bisimulation closed under service name
substitutions, and we call full weak bisimilarity ≈f the largest full weak bisimulation.

Again, weak bisimilarity can be obtained as the union of all weak bisimulations or as
a fixed-point of a suitable monotonic operator. Moreover, as for the strong case, weak
bisimilarity is a non-input congruence, as in in the π-calculus.

Theorem 2. Weak bisimilarity is a non-input congruence.

Corollary 2. Weak full bisimilarity is a congruence.

Useful Axioms. Even if presenting a complete axiomatization for such a complex cal-
culus is out of the scope of this paper, we present here some axioms (equational laws
correct with respect to strong/weak full bisimilarity) that capture key facts about the be-
haviour of processes. Some of them are useful to prove the correctness of the transfor-
mations presented in the previous section. We need the following definitions of contexts
and double contexts.
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Definition 4 (Contexts and double contexts). A context C�•� is any SSCC process
where a subterm has been replaced by the symbol •. The application C�P � of context
C�•� to process P is the process obtained by replacing • with P inside C�•�.

A double context D�•1, •2� is any SSCC process where two subterms have been
replaced by symbols •1 and •2. The application D�P1, P2� of double context D�•1, •2�
to processes P1 and P2 is the process obtained by replacing •1 with P1 and •2 with P2
inside D�•1, •2�.

Unless otherwise specified, the correctness of the axioms below can be proved by con-
sidering as full bisimulation all the instances of the equations together with the identity.

Proposition 1

Session Garbage Collection

(ν r)D�r � 0, r � 0�∼f D�0,0� where D does not bind r (1)

Stream Garbage Collection

stream 0 as f in P ∼f P if f does not occur in P (2)

Session Independence

r �� Q | s �� P ∼f r �� (s �� Q | P) if s �= r (3)

The same holds if the sessions have opposite polarities.
Stream Independence

stream P as f in stream P ′ as g in Q ∼f

stream P ′ as g in stream P as f in Q if f �= g (4)

Streams are Orthogonal to Sessions

r �� (feed v | P )∼f feed v | r �� P (5)

Stream Locality

stream P as f in (Q | Q′)∼f(stream P as f in Q) | Q′, if f /∈ fn(Q′) (6)

Unused Stream
stream P as f in 0 ≈f P{feed v.Q → Q} (7)

Parallel Composition Versus Streams

stream P as f in Q ∼f P |Q if f /∈ fn(Q) and P does not contain feed (8)

The Session Independence law shows that different sessions are independent. Interest-
ingly this property is strongly dependent on the available operators, and fails in similar
calculi such as [3, 4].

The notation {feed v.Q → Q} in the Unused Stream law (Axiom 7) denotes a trans-
formation on processes defined by induction on the syntax which is the identity but for
transforming feed v.Q into Q. Notice also that Axiom 7 is correct only with respect to
full weak bisimilarity. It becomes correct with respect to strong full bisimilarity if and
only if P does not contain any feed which is not inside another stream. Together with
Equation 2 this allows to prove the relation between streams and parallel composition
in Equation 8.
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P : U

v.P : !.U

P : U

(x)P : ?.U

P : U

a ⇒ P : end
P : U

a ⇐ P : end
(T-SEND, T-RECEIVE, T-DEF, T-CALL)

P : U

r � P : end
P : U

r � P : end
P : U

feed v.P : U

P : U

f(x).P : U
(T-SESS-S, T-SESS-C, T-FEED, T-READ)

P : U Q : end
P |Q : U

P : end Q : U

P |Q : U
(T-PAR-L, T-PAR-R)

P : U Q : end
stream P as f = �v in Q : U

P : end Q : U

stream P as f = �v in Q : U
(T-STREAM-L, T-STREAM-R)

P : end
rec X.P : end

P : U

(ν n)P : U
X : end 0 : end

(T-REC, T-RES, T-VAR, T-NIL)

Fig. 8. Type system for sequentiality

5 Breaking Sequential Sessions

The equations shown in Section 4 hold for general processes, and will allow us to prove
the correctness of the two optimizations in Section 3. However to prove the correctness
of the implementation step they are not enough.

In fact, it is not easy to break a session allowing the conversation to continue in a
freshly generated new session, since, in general, communication patterns inside sessions
can be quite complex, e.g., since sessions may include many ongoing concurrent com-
munications. However, a small class of sequential sessions captures the most interesting
within-session behaviours. Such a class can be identified by a type system.

We start by presenting the type system for sequentiality, and then we will present
some properties of well-typed processes that will allow us to prove the correctness of the
last transformation in Section 3. The type system is a simplification of the one in [12],
which guarentees also protocol compatibility. Moreover, we consider just finite types,
thus session protocols should be finite. Notice that this constraint does not forbid infinite
behaviours, but just infinite sessions. In particular, if a process is typable according to
the type system in [12], and all the involved types are non recursive, then the process is
typable according to the type system presented herein.

We consider typed processes of the form P : U where U is the protocol type. We
consider as types ?.U , !.U , and end, denoting respectively a protocol that performs an
input and then continues as prescribed by U , a protocol that performs an output and
then continues as prescribed by U , and the terminated protocol. It is clear that in this
setting a request is a session with protocol !.end (and complementary protocol ?.end),
while a request-response has protocol !.?.end (and complementary protocol ?.!.end).
The type system is inductively defined by the rules in Figure 8.

Under the typability assumption, SSCC sessions are sequential in a very strong
sense: we can statically define a correspondence between inputs and outputs such that
each input is always matched by the corresponding output. We show how to break
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sessions, i.e., how to make the conversation continue on a freshly created new ses-
sion. The general law is presented under Theorem 3. The two pieces of sessions have
protocols that are simpler than the original one, thus by repeatedly applying the trans-
formation we can reduce any protocol to a composition of request and request-response
patterns. We formalise the procedure described so far.

Definition 5. Let P be a process. An input/output prefix inside P is at top-level in P if it
is neither inside a service definition/invocation nor inside a session. Given a process P
we can assign sequential indices to top-level input/output prefixes in P according to the
position of their occurrence in the term, starting from 1. Thus the i-th top-level prefix
in P is the top-level prefix in P that occurs in i-th position.

For instance, let P be a.(x).stream (y).feed y as f in f(y).y ⇐ a.(z).feed z. Then P
annotated with indices on its top-level prefixes is:

a : 1.(x) : 2.stream (y) : 3.feed y as f in f(y).y ⇐ a.(z).feed z

Definition 6 (Active contexts). Active contexts are contexts defined by the following
grammar.

A�•� ::= • | A�•�|Q | P |A�•� | (ν n)A�•� | r �� A�•�

| stream A�•� as f = �v in Q | stream P as f = �v in A�•�

Definition 7. Given a process P with a subterm Q, we say that Q is enabled in P if
P = A�Q� for some active context A�•�. The same definition holds also for prefixes.

Intuitively a subterm is enabled when it can execute.

Lemma 3. Let P be a typable process. If P has type end then it has no top-level
enabled prefixes, otherwise it has exactly one top-level enabled prefix, and this has
index 1.

Proof. By induction on the typing proof of P . The thesis follows trivially for rules
T-SEND, T-RECEIVE, T-DEF, T-CALL, T-SESS-S, T-SESS-C, T-FEED, T-READ, and T-
NIL. For rule T-RES, it follows by inductive hypothesis. For rules T-PAR-L, T-PAR-R,
T-STREAM-L, and T-STREAM-R, it follows from the observation that one of the two
sides has no enabled prefix, thus inductive hypothesis can be applied on the other side.

Definition 8. Given a transition P
α−→ Q and a prefix in P we say that the prefix is

consumed if, in the derivation of the transition, rule L-SEND or L-RECEIVE is applied
to the prefix.

Notice that the consumed prefix does not occur in Q.

Lemma 4. Let P0 = (ν a)D�a ⇒ P, a ⇐ Q� be a typed process such that a does not

occur in D�•, •�. Suppose P0
α0−−→ . . .

αn−1−−−→ Pn. Then either:

– Pn = (ν a)D′�a ⇒ P, a ⇐ Q� for some D′�•, •� or
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– Pn = (ν r)D′�r � P ′, r � Q′� for some D′�•, •�, processes P ′ and Q′ and session
name r.

Furthermore, whenever the i-th prefix in P is consumed the i-th prefix in Q is consumed
too, and the two are synchronised.

Proof. The proof is by induction on n. The base case (n = 0) is trivial. Let us consider
the inductive case. In order to prove the second condition we show that the follow-
ing property holds: at each step either (i) all the prefixes preserve their indices, or (ii)
prefixes with index 1 are consumed and the indices of all other prefixes decrease by 1.

Let us consider the two possible forms for Pi. In both the cases if the transition
involves only the context then the thesis follows trivially (case (i)). In the first case
the only other possible transition is the interaction between the service invocation and
the service definition in the two holes (since a does not occur in D�•, •�). This leads
to a process of the second form. Also, the indices are preserved. Let us consider the
second case. For transitions not involving prefixes the thesis follows trivially (case (i)).
Suppose now that e.g., in P ′ an output prefix is consumed (the case where the prefix is

an input prefix or the consumed prefix is in Q′ is symmetric). Thus P ′
↑v−→ P ′′ and

r � P ′
r�↑v−−−→ r � P ′′. Since r is private, this label should interact with a label of the

form r� ↓v. For the condition about well-formed processes this can be generated only
by r�Q′, and thanks to Lemma 3 this must be the prefix with index 1. Thus in both P ′′

and Q′′ prefix indices are equal to the indices in P ′ and Q′ minus 1. This proves the
thesis.

We now have all the tools required to prove the correctness of the session breaking
technique.

Theorem 3. Let (ν a)D�a ⇐ C�(x).P �, a ⇒ C′�v.Q�� be a typed process such that
a does not occur in D�•, •�. Suppose that there exists i such that (x).P and v.Q are
the i-th top-level prefixes in C�(x).P � and in C′�v.Q�, respectively. Let y /∈ fn(P ),
b /∈ fn(Q). Then:

(ν a)D�a ⇐ C�(x).P �, a ⇒ C′�v.Q��≈f

(ν a)D�a ⇐ C�(x, y).y ⇐ P �, a ⇒ C′�(ν b)〈v, b〉.b ⇒ Q��

Proof. We show that the following is a full weak bisimulation:

{((ν a)D�a ⇐ C�(x).P �, a ⇒ C′�v.Q��,

(ν a)D�a ⇐ C�(x, y).y ⇐ P �, a ⇒ C′�(ν b)〈v, b〉.b ⇒ Q��)
((ν r)D�r � C�(x).P �, r � C′�v.Q��,

(ν r)D�r � C�(x, y).y ⇐ P �, r � C′�(ν b)〈v, b〉.b ⇒ Q��)
((ν r)D�r � C�P �, r � C′�Q��, (ν r, b)D�r � C�b ⇐ P �, r � C′�b ⇒ Q��)
((ν r)D�r � C�P �, r � C′�Q��, (ν r, r′)D�r � C�r′ � P �, r � C′�r′ � Q��)}

where all the names and processes are universally quantified, y /∈ fn(P ), b /∈ fn(Q),
and (x). and v. have the same index.
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Processes in the first pair can move only to processes of the same shape or to pro-
cesses in the second pair because of Lemma 4. Similarly processes in the second pair
can move to processes of the same form or to processes in the third pair (notice in fact
that prefixes with the same index should be consumed at the same time). In the third
pair the only transition that can change the structure of the processes is the invocation of
service b on the right, but since this is a τ step, thus the left part can answer by staying
idle.

Notice that the technique above can be extended so to break protocols of services with
more than one definition/invocation: simply break all of them at the same point.

6 Correctness of the Transformations

We now prove that the transformations presented in Section 3 are actually correct with
respect to full weak bisimilarity. Interestingly, they are also transparent for process A,
i.e. A needs not to be changed when the transformation is applied, and binder (ν b). To
prove this we show that the three equations below hold.

(ν c)(B | C) ≈f (ν c)(E | C) (9)

(ν c)(E | C) ≈f (ν c)(F | C) (10)

(ν c)(F | C) ≈f (ν c)(G | D) (11)

The correctness of the whole transformations, i.e., SC ≈f SC′≈f SC′′≈f SC′′′ fol-
lows from closure under contexts from the equations above.

Note that the transformation of auxiliary communications (passing value w from rB

to sB and value v from sB to rB) into normal communications are actually correct only
up to weak full bisimilarity. In fact, auxiliary communications require a few more steps,
and leave behind them empty sessions and streams, which have to be garbage collected.
The correctness of garbage collection is based on Equations 1 and 2.

Proof (of Equation 9). The proof can be easily obtained by exhibiting a bisimulation
including the two processes. For lack of space we will not show it, but just highlight
a few important points. The two processes can mimic each other even if the first one
is non deterministic, since the nondeterminism comes from τ steps, whose order is
not important, since the processes are confluent. Also, as mentioned before, garbage
collection Equations 1 and 2 are used in the proof. After some steps, the two processes
have evolved to:

(ν s)(r � Q[w/x][v
′
/y] | s � R[w/x][w

′
/z][v

′
/y] | s � S[w/x][v/y])

(ν s)(r � (s � R[w/x][w
′
/z][v

′
/y]) | Q[w/x][v

′
/y] | s � S[w/x][v/y])

respectively. These processes can be proved equivalent using structural congruence
(which is included in full bisimilarity, according to Lemma 2), session independence
(Equation 3) and closure under contexts.
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Proof (of Equation 10). To prove the correctness of Equation 10 it is enough to prove
E ≈f F , then the thesis follows from closure under contexts. Actually, in general we
can prove

(ν a)(C′�a ⇑ v.P � | C′′�a ⇓ (y).Q�)≈f stream C′�feed v.P � as f in C′′�f(y).Q�
(12)

provided that neither a nor f occur elsewhere and P and C′ contain no feeds.
The proof shows that the three pairs below, together with a few other pairs differing

from these because of τ transitions (corresponding to intermediate steps) form a full
bisimulation.

((ν a)(C′�a ⇑ v.P � | C′′�a ⇓ (y).Q�), stream C′�feed v.P � as f in C′′�f(y).Q�)
(C′�P � | C′′�stream 0 as f ′ = 〈v〉 in f ′(y).Q�,

stream C′�P � as f = 〈v〉 in C′′�f(y).Q�)
(C′�P � | C′′�Q�, stream C′�P � as f in C′′�Q�)

In each process considered in the relation, a, f , and f ′ do not occur elsewhere, and P
and C′ do not contain feeds.

The only difficult part is when the feed and read from stream are executed (and,
correspondingly, the two auxiliary communications). Actually both transitions amount
to τ actions.

stream C′�feed v.P � as f in C′′�f(y).Q�
τ−→

stream C′�P � as f = 〈v〉 in C′′�f(y).Q�

stream C′�P � as f = 〈v〉 in C′′�f(y).Q�
τ−→ stream C′�P � as f in C′′�Q[v/y]�

The first transition is as follows (where we used the definitions of auxiliary communi-
cations in the first step).

(ν a)C′�a ⇑ v.P � | C′′�a ⇓ (y).Q� =
(ν a)C′�stream a ⇐ v.feed u as f ′′ in f(x).P � |

C′′�stream a ⇒ (z)feed z as f ′ in f(y).Q�
τ→
∗

(ν a, r)C′�stream r � 0 as f ′′ in P � | C′′�stream r � 0 as f ′ = 〈v〉 in f(y).Q�∼f

C′�P � | C′′�stream 0 as f ′ = 〈v〉 in f(y).Q�

where in the last step we used Equations 1 and 2. The second transition is matched by:

C′�P � | C′′�stream 0 as f ′ = 〈v〉 in f(y).Q�
τ−→

C′�P � | C′′�stream 0 as f ′ in Q[v/y]�∼f C′�P � | C′′�Q[v/y]�

where we used Equation 2 again. This concludes the proof.

Proof (of Equation 11). It is easy to verify that (ν c)(F | C) can be typed according to
the type system for sequentiality. By considering:

D�•1, •2� = b ⇒ (x)(stream •1 as f in f(y).y.Q)|•2
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C�•� = x.• P = v.(y)feed y.R
C′�•� = (x)• Q = (y)v′.S

we can apply Theorem 3 to get the thesis since prefixes (z) and w′ have both index 2.

7 Conclusions

We have shown how to exploit formal techniques to define correct program transforma-
tions relating different styles of programming used in the field of service-oriented sys-
tems, namely object-oriented, session-based and request/request-response based. This
allows to exploit the different techniques available in each field, and still get a system
implemented using the desired technology.

In addition to that, we have illustrated the expressiveness of SSCC [10, 12], also in
a field like object-oriented programming, for which it was not conceived. We have also
demonstrated the benefit of working with sequential sessions, where more powerful
transformations are available.

For future work we intend to investigate the possibility of extending the session
breaking transformation to larger classes of systems. We are aware of the fact that par-
allel communications make the agreement between the client and the server on where
to change session more difficult. Towards this end, a promising approach is to perform
a preliminary transformation turning arbitrary sessions into sequential ones.
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Abstract. Distributed algorithms are inherently complex to verify. In
this paper we show how to verify that a concurrent lock-free implemen-
tation of a stack is correct by mechanizing the proof that it is lineariz-
able, linearizability being a correctness notion for concurrent objects.
Our approach consists of two parts: the first part is independent of the
example and derives proof obligations local for one process which im-
ply linearizabilty. The conditions establish a (special sort of non-atomic)
refinement relationship between the specification and the concurrent im-
plementation. These are used in the second part to verify the lock-free
stack implementation. We use the specification language Z to describe
the algorithms and the KIV theorem prover to mechanize the proof.

Keywords: Z, refinement, concurrent access, linearizability, non-atomic
refinement, theorem proving, KIV.

1 Introduction

Locks have been used to control access by concurrent processors to shared ob-
jects and data structures. However, performance and other issues have led to
the development of lock-free algorithms which allow multi-processors access to
the data structures in a highly interleaved fashion. Such concurrent algorithms
providing access to shared objects (e.g., stacks, queues, etc.) are intrinsically
difficult to prove correct, and the down-side of the performance gain from using
concurrency is the much harder verification problem: how can one verify that a
lock-free algorithm is correct? This paper is concerned with the development of
a theory that allows mechanized proof of correctness for lock-free algorithms.

As an example we use the lock-free stack from [19] which implements atomic
push and pop operations as instructions to read, write and update local variables
as well as the stack contents, the individual instructions being devised so that
concurrent access can be granted. The only atomic operations are the reading and
writing of variables and an atomic compare-and-swap (atomically comparing the
values of two variables plus setting a variable). Sequential notions of correctness,
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such as refinement [5,22], which rely on strict atomicity being preserved for all
operations in an implementation have to be adapted to provide a correctness
criteria for such a concurrent non-atomic setting. Linearizability [13] is one such
criteria which essentially says that any implementation could be viewed as a
sequence of higher level operations. Like serializability for database transactions,
it permits one to view concurrent operations on objects as though they occur in
some sequential order [13]:

Linearizability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

Recent work on formalizing and verifying lock-free algorithms includes [9,3,1,15]
as well as our own [6]. These show correctness by showing that an abstraction (or
simulation or refinement) relation exists between the abstract specification and
the concurrent implementation [9,3,1,15,10,6]. The proofs are manual or partly
supported by theorem provers like, for instance, PVS.

All these papers argue informally that refinement implies the original lin-
earizability criterion of [13]. Our work instead gives a formal theory that relates
refinement theory and linearizability, which has been fully mechanized using the
interactive theorem prover KIV [20]. A web presentation of the KIV proofs is
available [16].

Linearizability
⇑ (Sect. 5)

Data Refinement
⇑

Forward Simulation using Possibilities (Sect. 6)
⇑

Local proof obligations for one process (Sect. 3)
⇑

Proof obligations for the lock-free stack (Sect. 4)
⇑

Lock-Free Stack (Sect. 2)

Fig. 1. Structure of the linearizability proof for the lock-free stack

Our methodology of proving linearizability consists of two parts: A generic
part, shown in the upper half of Fig. 1 which derives proof obligations for one
process. These proof obligations are shown to imply linearizability, and their
genericity means they should be applicable to other algorithms in addition to
the case study presented here. The second part is thus an application specific
part (the lower half of Fig. 1) which instantiates these proof obligations for our
particular case study.

We start with the lower half, which extends our work in [6], where we used
non-atomic refinement to verify linearizability. The specifications given there
were expressed as a combination of CSP and Object-Z. We only considered two



80 J. Derrick, G. Schellhorn, and H. Wehrheim

processes, one doing a push operation on the stack, and the other one a pop
operation. In addition, we restricted the linearization point to always occur at
the end of a sequence of operations implementing an atomic abstract operation.
This allowed us to prove the correctness of a slightly simplified version of the
algorithm given in [3].

Returning to this paper, in the next section we specify the stack and its lock-
free implementation, given here as a Z specification rather than an integration of
CSP and Object-Z (since this allows for simpler proof conditions). (The use of Z
also allows the specification of several processes to be very elegantly captured in
the specification using Z’s notion of promotion, although we suppress this aspect
here due to space restrictions.)

Section 3 then describes the background and the methodology that we have
derived. It results in proof obligations that generalize the ones in [6] in two
ways. First, we relax the assumption of having just two processes, and verify
linearizability for an arbitrary numbers of processes. Second, we allow arbitrary
linearization points. The proof obligations are applied on our running example
in Section 4.

The second half of our paper is concerned with the top half of Fig. 1. In
Section 5 we give a formal definition of linearizability and show that it can be
viewed as a specific form of data refinement. Section 6 justifies our local proof
obligations by constructing a global forward simulation using the possibilities
employed in [13]. The last section concludes and discusses related work.

2 The Stack and Its Lock-Free Implementation

Our example stack and its lock-free implementation is based on that given in
[3]. Initially the stack is described as a sequence of elements of some given type
T together with two operations push and pop. push pushes its input v? on the
stack, and pop removes one element that is returned in v !. When the stack is
empty, pop leaves it and returns the special value empty (assumed to be not in
T ). The specification is given in Z [21,2], with which we assume the reader is
familiar. The abstract stack specification is defined by:

AS
stack : seq T

AInit
AS ′

stack ′ = 〈 〉

push
ΔAS
v? : T

stack ′=〈v?〉 � stack

pop
ΔAS ; v ! : T ∪ {empty}

stack = 〈 〉 ⇒
v ! = empty ∧ stack ′ = stack

stack �= 〈 〉 ⇒
v !=head stack ∧ stack ′= tail stack
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The lock-free implementation uses a linked list of nodes which can be accessed
by a number of processes. We use a free type to model linked lists so that a node
is either null or consists of an element plus a further node (its successor in the
list), we also define functions for extracting values from the nodes in a list:

Node ::= node〈〈T × Node〉〉 | null

first : Node �→ T

∀ t : T , n : Node •
first node(t , n) = t

second : Node �→ Node

∀ t : T , n : Node •
second node(t , n) = n

We will furthermore use a function collect : Node → seq T later on, which
collects all values of nodes reachable from some initial node in a list.

Informally a node consists of a value val : T and a pointer next , which either
points to the next node in the list or is empty and then has value null . A variable
head is used to keep track of the current head of the list. Operations push
and pop are split into several smaller operations, making new nodes, swapping
pointers etc.. There is one operation atomically carrying out a comparison of
values and an assignment: CAS (mem, exp, new) (compare-and-swap) compares
mem to exp; if this succeeds (i.e. mem equals exp), mem is set to new and CAS
returns true, otherwise the CAS fails, leaves mem unchanged and returns false.
In pseudo-code the push and pop operations that one process executes are given
as follows (here, head refers to the head of the linked list):

push(v : T): pop(): T:
1 n:= new(Node); 1 repeat
2 n.val := v; 2 ss:= head;
3 repeat 3 if ss = null then
4 ss:= head; 4 return empty;
5 n.next := ss; 5 ssn := ss.next;
6 until CAS(head,ss,n) 6 lv := ss.val

7 until CAS(head,ss,ssn);
8 return lv

Thus the push operation first creates a new node with the value to be pushed
onto the stack. It then repeatedly sets a local variable ss to head and the pointer
of the new node to ss . This ends once the final CAS detects that head (still)
equals ss upon which head is set to the new node n. Note that the CAS in push
does not necessarily succeed: in case of a concurrent pop, head might have been
changed in between. The pop is similar: it memorizes the head it started with
in ss , then determines the remaining list and the output value. If head is still
equal to ss in the end, the pop takes effect and the output value is returned.

Previously we used CSP to describe the orderings of the individual operations
as given in the pseudo-code above. However, it is sufficiently simple that we use
a program counter of the form either a number (1) or an O or U (for pop or
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push) followed by a number and give the ordering as part of the Z operations.
Thus we get the following values for program counters:

PC ::= 1 | O2 | O3 | O5 | O6 | O7 | O8 | U 4 | U 5 | U 6

We use a global state GS , that consists just of the head of the stack. This state
is shared by all processes executing the algorithms of push and pop above:

GS
head : Node

GSInit
GS ′

head ′ = null

Every process then possesses its own local state space (where local variables
like ss and n reside) and the global shared data structure, i.e., the linked list
characterised by its current head. The local state LS of a particular process
consists of the variables given in the pseudo-code above together with a program
counter pc:

LS
sso, ssu, ssn, n : Node
pc : PC
lv : T ∪ {empty}

LSInit
LS ′

pc′ = 1

To distinguish their use in pop and push we have appended a u, o, respectively,
to variables ss . Each line in the pseudo-code is turned into a Z operation, where
the numbering is according to line numbers in the pseudo-code.

First the operations are described in terms of their effect for one process, i.e. in
terms of the state GS and one state LS . We classify the operations into invoking
operations (INVOP, the first operation in a push or pop) and return operations
(RETOP). For instance psh2 is the invoking operation of push, constructing a new
node.

psh2
ΞGS [INVOP]
ΔLS
v? : T

pc = 1 ∧ pc′ = U 4
n ′ = node(v?, null)

psh4
ΞGS
ΔLS

pc = U 4 ∧ pc′ = U 5
ssu ′ = head

psh5
ΞGS
ΔLS

pc = U 5 ∧ pc′ = U 6
n ′ = node(first n, ssu)

CAStpsh
ΔGS [RETOP]
ΔLS

pc = U 6 ∧ pc′ = 1
head = ssu
head ′ = n

CASf psh
ΞGS
ΔLS

pc = U 6 ∧ pc′ = U 4
head �= ssu
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As usual, the notation Ξ specifies that the respective state space is unchanged,
whereas Δ allows for modifications. However, we adopt the Object-Z (as opposed
to Z) convention that all variables not mentioned in the predicate of a schema
stay the same. This simply makes the specifications much more readable (other-
wise we would have to add a lot of predicates of the form ssu ′ = ssu etc.) and has
no semantic consequence. Note that the only operation within push modifying
the global data structure is CAStpsh (the succeeding CAS), which is also the
return operation.

Similarly, we model pop. The operation pop2 which reads head at line 2 is
duplicated, since it is called as an invoking operation (when pc = 1) as well as
when the loop is iterated (pc = O2).

pop2inv
ΞGS [INVOP]
ΔLS

pc = 1 ∧ pc′ = O3
sso′ = head

pop2
ΞGS
ΔLS

pc = O2 ∧ pc′ = O3
sso′ = head

pop3t
ΞGS [RETOP]
ΔLS
v ! : T ∪ {empty}

pc = O3 ∧ pc′ = 1
sso = null ∧ v ! = empty

pop3f
ΞGS
ΔLS

pc = O3 ∧ pc′ = O5
sso �= null

pop5
ΞGS
ΔLS

pc = O5 ∧ pc′ = O6
ssn ′ = second sso

pop6
ΞGS
ΔLS

pc = O6 ∧ pc′ = O7
lv ′ = first sso

CAStpop
ΔGS
ΔLS

pc = O7 ∧ pc′ = O8
head = sso
head ′ = ssn

CASf pop
ΞGS
ΔLS

pc = O7 ∧ pc′ = O2
head �= sso

pop8
ΞGS [RETOP]
ΔLS
v ! : T ∪ {empty}

pc = O8 ∧ pc′ = 1
v ! = lv

Here, we find two return operations: a pop can return with output empty (op-
eration pop3t) or with the effect of one node actually removed from the front of
the linked list and its value returned as an output (operation pop8).

All these operations are defined for the local state. For the full scenario, it is
assumed that each operation is executed by processes p ∈ P , then working on
GS and a local state LS = lsf (p) returned by a function lsf that stores all local
states. A formal definition of this full scenario could be given in terms of promo-
tion (see [2] or [5]), for reasons of space we only give a simple relational definition
which also adds histories in Section 5 (histories are needed for linearizabilty).
We now have an abstract model of the stack, where push and pop occurs atom-
ically, and an implementation with several processes operating concurrently on
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the linked list implementing the stack. The objective then is to show that this
lock-free implementation is linearizable with respect to the initial abstract model.
Technically, this is done showing a particular form of refinement relation between
abstract and concrete specification.

3 The Refinement Methodology

To show that linearizability holds we take the local view of one process and define
forward simulation conditions that show that the concrete implementation is a
non-atomic refinement [7,8] of the abstract stack. The purpose of this type of
non-atomic refinement is to show that the concrete system (with many small
steps) resembles the abstract system with a smaller number of “larger” steps.
We will argue informally, that the proof obligations are sufficient to guarantee
linearizability, a formal justification will be given in Sections 5 and 6.

In a standard (atomic) refinement, an abstract operation is implemented by
one concrete operation, and to verify the correctness of such a transformation
forward (and backward) simulations are used to describe how the abstract and
concrete specifications proceed in a step by step fashion. The simulations are
given in terms of an abstraction relation R relating states of the concrete and
abstract specification, and then one proves that from related states, every step
of a concrete operation can be mimicked by a corresponding abstract operation
leading to related states again. In the case of non-atomic refinement one abstract
operation is now implemented by a number of concrete operations. To adapt the
simulation conditions one requires that concrete steps are either matched by an
abstract step or by no operation at all. One scenario of this kind is depicted in
Figure 2.

In the diagram, the upper level shows states and transitions of the abstract
specification, the lower those of the concrete system. Dashed lines depict the
abstraction relation R. (The labellings will be explained later). Starting from a
pair of related states, a number of steps in the concrete system might abstractly
have no effect on the state, thus the abstraction relation R stays at the same
abstract state while changing the concrete. However, some concrete transitions
(in this case the one in the middle) match a corresponding abstract operation,
and the usual condition in simulations tells us that an abstract operation needs
to be executed such that the after-states are again related. Matching with an

INVOP RETOP

BS1
INV

AS
RAS

BS2

COP COP COP

AOP

Fig. 2. Linearization in the middle
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abstract step has to take place whenever the current concrete operation has a
visible effect, and in our setting such visible effects are the linearization points.
Details of how the non-atomic simulation conditions are derived and examples
of their use are given in [7,8].

For our purposes we tailor the simulation conditions to our particular appli-
cation of concurrent algorithms. First of all, since our concrete specification is
partitioned into a global state GS together with local states LS for each process,
we will describe the abstraction relation R as sets of elements (as , gs , ls) ∈ R
which we also write as R(as , gs , ls). R(as , gs , ls) then means that an abstract
state as is related to a global concrete state gs and one local state ls 1.

The second adaption concerns the processes themselves. Processes can have
three different states: they can be idle (IDLE ), have already invoked the im-
plementation of an abstract operation possibly with some input in (IN (in)) or
they have already produced some output out for this operation (OUT (out)).
This gives rise to the following types:

STATUS ::= IDLE | IN 〈〈T ∪ {empty}〉〉 | OUT 〈〈T ∪ {empty}〉〉

To verify the simulation conditions, we require that a function status : LS →
STATUS has been defined. We furthermore require the concrete set of opera-
tions that implement one abstract operation AOP to be split into three classes:
invocations INVOP, returns RETOP and other operations (here denoted COP), as is
the case in our stack example above. The formal KIV specification has concrete
operations {COpj}j∈J with J partitioned into IJ , RJ and CJ , abstract opera-
tions {AOpi}i∈I , and a mapping abs : J → I to define which concrete operation
implements which abstract operation. For better readability we drop indices in
the proof obligations.

RETOP

AS

INVOP

INV2 AS
RAS

AOP

COP COP RETOPINVOP

RBS
BS1INV1

COP

AOP

Fig. 3. Linearization on invocation or on return

The forward simulation conditions consist of six separate clauses: Init, Invoke,
Before Sync, After Sync, Return before sync and Return after sync, which we
describe in turn. In addition to the initialisation, these describe a number of
different possibilities. First of all we have to say how invocations, returns and
other operations behave. Second, we have to describe whether these operations
match the abstract one (we call this a linearization with AOP in the descriptions
below), or whether they should have no observable effect. This second aspect
gives us the disjunctions in the conditions below.
1 Note that we do not have all local states together in R.
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First of all, Init is the standard initialisation condition, requiring that initial
states of the two specifications are related:

Init

∃ as ∈ AInit • R(as , gs , ls)

Like all following conditions, the formula is implicitly universally quantifies over
all its free variables (here: gs : GS and ls : LS ). Invoke places a requirement on
the operations marked as INVOP, which are the operations that begin a sequence
of concrete operations corresponding to one abstract operation. In our example
psh2 and pop2inv are of type INVOP. Invoke requires that if a process is idle and
an invoking operation is executed then one of two things happen. Either the con-
crete after states are linked to the same abstract states as before (R(as , gs ′, ls ′),
see diagram INV1 to the right of Figure 3) and the status is moved from IDLE
to IN , or that linearization has already taken place (diagram INV2 left of Figure
3), the process moves to its OUT state and we must match this invoke operation
with the abstract AOP :

Invoke

R(as , gs , ls) ∧ status(ls) = IDLE ∧ INVOP(gs , ls , gs ′, ls ′, in)
⇒ (R(as , gs ′, ls ′) ∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as , gs ′, lsq))

∧ status(ls ′) = IN (in))
∨ (status(ls ′) = OUT (out)

∧ ∃ as ′ : AS • AOP(in, as , as ′, out) ∧ R(as ′, gs ′, ls ′)
∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as ′, gs ′, lsq))

An additional condition ∀ lsq : LS • R(as , gs , lsq) ⇒ R(as ′, gs ′, lsq) is the price
to pay for interleaving processes compared to standard non-atomic refinement:
the condition prevents that other processes with an unknown, arbitrary state lsq
are affected by the local operation.

Before sync describes what happens if a concrete COP is executed before we
have reached the linearization point. It has two cases: either we have still not
linearized after the COP , or this is the linearization point (see Figure 2), in
which case we must match with the abstract operation AOP :

Before Sync

R(as , gs , ls) ∧ status(ls) = IN (in) ∧ COP(gs , ls , gs ′, ls ′)
⇒ (status(ls ′) = IN (in) ∧ R(as , gs ′, ls)

∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as , gs ′, lsq)))
∨ (status(ls ′) = OUT (out)

∧∃ as ′ : AS • AOP(in, as , as ′, out)
∧ R(as ′, gs ′, ls ′)
∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as ′, gs ′, lsq)))
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In our example, psh4, psh5, CASf pop, pop3f , pop6, pop5, CAStpop are all of type
Before Sync. A dual condition After Sync describes the effect of a concrete
operation taking place after the linearization point:

After Sync

R(as , gs , ls) ∧ status(ls) = OUT (out) ∧ COP(gs , ls , gs ′, ls ′)
⇒ R(as , gs ′, ls ′) ∧ status(ls ′) = OUT (out)

∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as , gs ′, lsq))

In our particular example, we do not have an operation that requires this
condition.

The final two conditions describe the effect of the RETOP operations and there
are two cases. We could either have linearized already (Return after sync,
diagrams RAS in the figures) in which case the concrete operation should have
no observable effect, but the output produced by RETOP has to match the current
one in status (stored during a previous linearization), or we haven’t already
linearized, and Return before sync then says we must now linearize with the
abstract operation AOP .

Return before sync

R(as , gs , ls) ∧ status(ls) = IN (in) ∧ RETOP(gs , ls , gs ′, ls ′, out)
⇒ ∃ as ′ : AS • AOP(in, as , as ′, out) ∧ R(as ′, gs ′, ls ′)

∧ status(ls ′) = IDLE
∧ (∀ lsq : LS : R(as , gs , lsq) ⇒ R(as ′, gs ′, lsq))

Return after sync

R(as , gs , ls) ∧ status(ls) = OUT (out) ∧ RETOP(gs , ls , gs ′, ls ′, out ′)
⇒ out ′ = out ∧ status(ls ′) = IDLE ∧ R(as , gs ′, ls ′)

∧ (∀ lsq : LS • R(as , gs , lsq) ⇒ R(as , gs ′, lsq))

In our example, CAStpsh is of type Return before sync, whilst pop8 and
pop3t are of type Return after sync.

4 Application to the Stack Example

In this section we describe how the methodology of the previous section can be
applied to our running example. This involves mainly working out the correct
abstraction relation and the status function, and then verifying the conditions
that we detailed above.

The representation relation is constructed out of several specific ones, detailing
the particular local state at various points during the execution. In summary:

R = collect(head) = stack ∧
∨

n∈PC Rn ∧ pc = n
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The overall R is the disjunction over individual Rns, for n being some specific
value of the program counter, conjoined with the predicate pc = n and – the ac-
tual relationship between abstract and concrete state space – a predicate stating
that collecting the values from head on gives us the stack itself. The individ-
ual Rns capture information about the current local state of a process being at
pc = n. For several ns no specific information is needed:

R1

AS ; GS ; LS RO2 =̂ R1, RO3 =̂ R1, RO8 =̂ R1

For others, certain predicates on the local state are needed. For instance, RU4

states the existence of a locally created node, or RO6 the relationship between sso
and ssn. There is no further specific relationship between abstract and concrete
state known (except for collect(head) = stack , which is true everywhere). Even
a previous read of head gives us no relationship to, e.g., sso since this may have
been invalidated by other concurrently running processes.

RU4

LS

∃ v , no′ •
n = node(v , no′)

RU5

LS

∃ v , no′ •
n = node(v , no′)

RU6

LS

∃ v • n = node(v , ssu)

RO5

LS

sso �= null

RO6

LS

sso �= null
ssn = second sso

RO7

LS

sso �= null
ssn = second sso
lv = first sso

Furthermore we need the definition of status . The status of a local state essen-
tially depends on the program counter, it determines whether a process is in
state IDLE , IN or OUT , thereby determining the linearization points. Local
variables n, sso and lv can be used to determine values for input and output.

status : LS → STATUS

∀ ls ∈ LS •
(ls .pc = 1 ⇒ status(ls) = IDLE )
(ls .pc ∈ {U 4, U 5, U 6} ⇒ status(ls) = IN (first ls .n))
(ls .pc = O3 ∧ ls .sso = null ⇒ status(ls) = OUT (empty))
(ls .pc ∈ {O2, O5, O6, O7}∨ (ls .pc = O3 ∧ ls .sso �= null)

⇒ status(ls) = IN (empty))
(ls .pc = O8 ⇒ status(ls) = OUT (ls .lv))

For our example, the linearization point of the push algorithm is the last re-
turning instruction CAStpsh (so all intermediate values of the program counter
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within push have status IN ). For the pop algorithm it is also the last instruction
pop8 for the case of a nonempty stack. But when pop2 finds an empty stack
in head and therefore sets sso′ to null this must already be the linearization
point, since at any later point during the execution the stack might already be
nonempty again. There status is OUT (empty) at pc = O3 and sso = null .

Finally, we look at the verification of one of our conditions. Here, we take
a look at condition Return after sync and the case where the return oper-
ation is pop8. Thus, on the left side of our implication we have R(as , gs , ls) ∧
status(ls) = OUT (out) ∧ pop8(gs , ls , gs ′, ls ′, out ′). Since pop8 is executed, we
have pc = O8. Hence status(ls) = OUT (lv). By definition of pop8, we further-
more get gs = gs ′, out ′ = lv , pc′ = 1. Hence out ′ = out (first conjunct to
be shown), status(ls ′) = IDLE (follows from pc′ = 1, second conjunct), and
R(as , gs ′, ls ′) holds by definition of R1 (pc′ = 1) and the previous validity of
collect(head) = stack . Furthermore, from R(as , gs , lsq) we get R(as , gs ′, lsq)
since gs ′ = gs . This can similarly be done for all conditions and all operations,
but - as a manual verification is error prone - KIV was used for this purpose,
which lead to several small corrections. For example, RU4 and RU5 originally
contained (erroneously) the condition ∃ v • n = node(v , null). Since the com-
plexity of the linearizability proof is contained in the generic theory, and proof
obligations are tailored to interleaved execution of processes, applying them is
easy: specification and verification of the stack example needed two days of work.

5 Linearizability as Refinement

In this and the following section we show that our local proof obligations are
sufficient to guarantee linearizability as defined in Herlihy and Wing’s paper
[13]. The process to do this is as follows: in this section we give two data types
ADT and CDT with operations {AOpp,i}p∈P ,i∈I and {COpp,j }p∈P ,j∈J . These
are derived from the local operations {COpj }j∈J and {AOpi}i∈I used in the
proof obligations by adding a second index p ∈ P that indicates the process p
executing the operation. For the concrete level, COpp,j now works on a local
state lsf (p) given by a function lsf : P → LS instead of LS . We also add
histories to the states and operations on both levels, which are lists of invoke
and return events. This is necessary, since the formal definition of linearizability
is based on a comparison of two histories created by the abstract and concrete
level. By placing this criterion in the finalization of ADT and CDT , we encode
linearizability as a specific case of standard data refinement ([11], see [4] for the
generalization to partial operations) between the two data types (the discrepancy
between the sets of indices is bridged by function abs , as explained below).

Our proof obligations are then justified in the next section by showing that
they imply a forward simulation FS between ADT and CDT . This is the most
complex step in the verification, since the additional concept of possibilities is
needed to define FS .

We start by defining the histories H ∈ HISTORY that are maintained by
the two data types. They are lists of invoke and return events e ∈ EVENT .
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An event indicates that an invoke or return operation has taken place executed
by a certain process with some input (invoke) or output (return). The formal
definition is

EVENT ::= inv〈〈P × I × IN 〉〉 | ret〈〈P × I × OUT 〉〉
HISTORY ::= seq(EVENT )

Predicates inv?(e) and ret?(e) check an event to be an invoke or a return.
e.p ∈ P is the process executing the event, e.i denotes the index of the abstract
operation to which the event belongs. For a history H , #H is the length of the
sequence, and H (n) its nth element (for 0 ≤ n < #H ). Executing operations
adds events to a history. If an invoke operation INVOPj with input in is executed
by process p, it adds inv(p, i , in) to the history, where i = abs(j ) is the index
of the corresponding abstract operation as given by function abs : J → I of
Section 3. Using a function lsf : P → LS such that lsf (p) is the local state of
process p we therefore define COpp,j to be the operation

COpp,j (gs , lsf , H , gs ′, lsf ′, H ′) ==

∃ ls ′ • INVOPj (in, gs , lsf (p), gs , ls ′)
∧ H ′ = H � 〈inv(p, abs(j ), in)〉
∧ lsf ′ = lsf ⊕ {p �→ ls ′}

Similarly, COpp,j for a return operation RETOPj adds the corresponding return
event to the history. Other operations leave the history unchanged.

The histories created by interleaved runs of processes form legal histories
only: a legal history contains matching pairs (mp) of invoke and return events,
for operations that have already finished, and pending invocations (pi), where
the operation has started (i.e. the invoke is already in the history), but not yet
finished. Corresponding formal definitions are

mp(m, n, H ) == m < n < #H ∧ H (m).p = H (n).p ∧ H (m).i = H (n).i
∧ ∀ k • m < k < n ⇒ H (k).p �= H (m).p

pi(n, H ) == inv?(H (n)) ∧ ∀ m • n < m < #H ⇒ H (m).p �= H (n).p

legal(H ) == ∀ n < #H • if inv?(H (n)) then pi(n, H ) ∨ ∃ m • mp(n, m, H )
else ∃ m • mp(m, n, H )

Histories created by abstract operations are sequential : each invoke is immedi-
ately followed by a matching return. A predicate seq(HS ) determines whether
HS is a sequential history. Atomically executing AOpi by process p adds both
events to the sequential history. Therefore AOpp,i is defined as

AOpp,i(as , HS , as ′, HS ′) ==

AOpi(in, as , as ′, out) ∧ HS ′ = HS � 〈inv(p, i , in), ret(p, i , out)〉

Linearizability compares a legal history H and a sequential history HS . For pend-
ing invokes the effect of the operation may have taken place (this will correspond
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to status = OUT in our proof obligations). For these operations corresponding
returns must be added to H . Assuming these returns form a list H ′, all other
pending invokes must be removed. Function complete removes pending invokes
from H � H ′. Formally we define

linearizable(H , HS ) ==

∃ H ′ ⊆ ret? • legal(H � H ′) ∧ seq(HS ) ∧ lin(complete(H � H ′), HS )

where lin requires the existence of a bijection f between the complete(H �
H ′) and HS that is order-preserving: for two matching pairs mp(m, n, H ) and
mp(m ′, n ′, H ), if the first operation finishes before the second starts (i.e., n <
m ′), the corresponding matching pairs in HS must be in the same order. This
gives the following definitions

lin(H , HS ) == ∃ f • inj (f , H , HS ) ∧ surj (f , H , HS ) ∧ presorder(f , H , HS )

inj (f , H , HS ) == ∀ m < n < #H • f (m) �= f (n)
∧ (mp(m, n, H ) ⇒ f (n) = f (m) + 1)

surj (f , H , HS ) == ∀ m < #H • f (m) < #HS ∧ HS (f (m)) = H (m)

presorder(f , H , HS ) == ∀ m, n, m ′, n ′ •
mp(m, n, H ) ∧ mp(m ′, n ′, H ) ∧ n < m ′ ⇒ f (n) < f (m ′)

Finally, we define a refinement between twodata types (CInit , {COPp,j }, CFin)
and (AInit , {AOPp,j}, AFin). Both initialization operations are required to set
the history to the empty list. AOpp,j is AOpp,abs(j) ∨skip where abs : J → I maps
the index of the concrete operation to the abstract operation it implements. The
concrete finalization extracts the collected history and abstract finalization is the
linearizability predicate:

AFin(as , HS , H ′) == linearizable(H ′, HS )
CFin(gs , lsf , H , H ′) == H ′ = H

With these finalization operations linearizability becomes equivalent to data
refinement for the two data types.

6 Possibilities and Forward Simulation

Reasoning with the definition of linearizability as given in the previous section
is rather tricky, since it is based on occurrences of events (i.e. positions in the
history list). This is the reason why all work we are aware of on linearizability
does not use this definition, but other definitions, for example, those based on IO
automata refinement such as [10] argue informally that these imply linearizabil-
ity. The problem was already noticed by Herlihy and Wing themselves, and they
gave an alternative definition based on possibilities. Possibilities require a set of
operations AOpi already, so they are less abstract than linearizability which only
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uses events. The following rule set defines an inductive predicate Poss(H , S , as)2

where H is a legal history, S is a set of returns that match pending invokes in H
(those pending invokes for which the effect has already occurred), and as is an
abstract state that can possibly be reached by executing the events in H (hence
the term ‘possibility’).

ASInit(as)
Poss(〈〉, ∅, as) Init

Poss(H , S , as) ∀ m.pi(m, H ) ⇒ H (m).p �= p

Poss(H � 〈inv(p, i , in)〉, S , as)
I

Poss(H , S , as) ∃ m.pi(m, H ) ∧ H (m) = inv(p, i , in) AOpi(in, as , as ′, out)
Poss(H , S ∪ {ret(p, i , out)}, as ′)

S

Poss(H , S , as) ret(p, i , out) ∈ S

Poss(H � 〈ret(p, i , out)〉, S \ {ret(p, i , out)}, as)
R

Rule Init describes the possible initial states: No event has been executed, the
abstract state is initial, and the set of returns is empty. Rule I allows to add an
invoke event for process p, provided there is not already a pending one in H . Rule
S corresponds to linearization points: the effect of the abstract operation takes
place (which requires a pending invoke), and the return is added to the set S of
returns. The return takes place in the last rule R, which adds the return to the
history. Compared to the informal definition in [13], we had to add some explicit
constraints which guarantee that all created histories are legal. Note that the
rules for possibilities are a close match for the invoke–linearization point–return
structure also present in our proof obligations.

One of the main tasks in formally justifying our proof obligations therefore is
a proof that all possibilities are linearizable:

Poss(H , S , as) ⇒ ∃ HS • linearizable(H , HS )

Essentially this is Theorem 9 of [13]. For our own proof within KIV we needed
to generalize the theorem to

Poss(H , S , as) ⇒ ∃ HS • ∀ H ′ •
eq(H ′, S ) ⇒ legal(H � H ′) ∧ lin(complete(H � H ′), HS )

where eq(H ′, S ) is true, iff H ′ is a duplicate free list that contains the same
events as the set S . The proof is inductive over the number of applied rules. The
case of the induction step, where rule S is applied is the most complex, since
both complete(H � H ′) and HS increase by adding a matching pair. Therefore
the bijection between H and HS must change, which creates a large number of
subcases to prove that the modified function is bijective and still preserves the
2 The notation of the original definition is (v , P ,R) ∈ Poss(H ). We use a predicate

instead of a set, as instead of v for the abstract state and S instead of R to avoid
confusion with the simulation relation. The parameter P of the original definition is
redundant: P can be shown to be the set of pending invocations of H .
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order of matching pairs. This proof, and the lemmas consumed, 10 days of the
15 days needed to do the KIV proofs for the whole case study.

Given that the existence of possibilities implies linearizability we are now able
to justify our proof obligations. We provide a forward simulation FS , such that
our proof obligations imply that COpp,j forward simulates AOpp,abs(j) ∨ skip
(where again, abs : J → I maps the index of the concrete operation to the
one of the corresponding abstract operation). The definition of FS is based on
relation R as used in our proof obligations and on possibilities

FS (as , HS , gs , lsf , H ) ==

(∀ p • R(as , gs , lsf (p))
∧ {H (n) • pi(n, H )}

= {inv(p, i , in) • runs(lsf (p)) = i ∧ status(lsf (p)) = IN (in)}
∧∃ S • S = {ret(p, i , out) • runs(lsf (p)) = i ∧ status(lsf (p)) = out}

∧ Poss(H , S , as)
∧ ∀ H ′ • (eq(H ′, S ) ⇒ legal(H � H ′) ∧ lin(complete(H � H ′), HS )

This formula uses an auxiliary function runs defined on local states, that gives
the index of the abstract operation, whose implementation is currently running3.
It is a conjunction of three properties. The first requires that the relation R holds
for all local states of processes. The second is an invariant for the concrete data
type: the pending inputs in the history correspond exactly to those implementa-
tions which run operation i and have not yet passed the linearization point (i.e.,
status is IN (in)). The last conjunct gives the connection to possibilities. The set
S consist of those return events where a process p is running operation i and
has reached status OUT (out). The last line of the formula should be compared
to the proof that possibilities imply linearizability above. There, a possibility
implied the existence of a suitable HS with this property. This HS is now the
HS constructed by the corresponding abstract run.

The proof that the given formula is indeed a forward simulation is moderately
complex. The proof of the main commutativity property for correctness splits
into three cases for invoking, return and other operations. Condition Invoke is
needed for the first case. Internal operations require Before Sync for the case
where status is IN (in), and After sync otherwise. Return operations similarly
require Return before sync and Return after sync respectively.

7 Conclusion

In this paper we have considered the verification of correctness of a lock-free
concurrent algorithm. In a state-based setting we have followed the approach of
using simulations to show that a linearizability condition is met. The correctness
proof involved several steps, showing first of all the existence of a particular
simulation relation between concrete algorithm and abstract specification and
furthermore, via a number of steps, proving that such a simulation relation
3 In our example, runs indicates whether the pc of p is within a push or pop operation.
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implies linearizability. All proof steps have been mechanically checked using the
theorem prover KIV.

Similar work on showing linearizability has been done by Groves and several
co-authors [9,3]. In [3] specifications are written as IO-automata and linearization
is shown using forwards and backwards simulation, and these were mechanized
in PVS. The mechanization however only included the concrete case study. That
simulation guarantees linearizability is argued but not mechanized.

Further work by Groves and Colvin includes [10], where they verify an im-
proved version of an algorithm of Hendler et al. [12] which in turn extends the
algorithm of [3] using a new approach based on action systems. This approach,
like ours, starts with an abstract level of atomic push and pop operations. The
approach uses a different proof technique than ours and their earlier work. Specif-
ically, it works by induction over the number of completed executions of abstract
operations contained in a history, and it is based on the approaches of Lipton
[18] and Lamport and Schneider [17].

Additional relevant work in state-based formalisms includes [1], where the
correctness of a concurrent queue algorithm using Event B is shown. There, in-
stead of verifying a given implementation, correctness is achieved by construction
involving only correct refinement steps.

Another strand of relevant work is that due to Hesselink who has considered
the verification of complex non-atomic refinements in the setting of a refinement
calculus based notation. For example, in [14] he specifies and verifies (using
PVS) a refinement of the lazy caching algorithm, where the model is not lin-
earizable but only sequentially consistent. In [15] he recasts linearizability proofs
as a refinement proof between two models which are verified by gliding simula-
tions which allow the concrete model to do fewer steps than the abstract one if
necessary.

The emphasis of our work was on the derivation of a generic, non-atomic
refinement theory for interleaved processes and its mechanization. We have not
yet considered the full complexity of the case study as done in [10] which adds
memory allocation, modification counts to avoid the ABA problem and extends
the algorithm by adding elimination arrays. These extensions remain as further
work.
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Abstract. In this work, novel symbolic step encodings of the transition
relation for object based communicating state machines are presented.
This class of systems is tailored to capture the essential data manipu-
lation features of UML state machines when enriched with a Java-like
object oriented action language. The main contribution of the work is
the generalization of the ∃-step semantics approach, which Rintanen has
used for improving the efficiency of SAT based AI planning, to a much
more complex class of systems. Furthermore, the approach is extended
to employ a dynamic notion of independence. To evaluate the encodings,
UML state machine models are automatically translated into NuSMV
models and then symbolically model checked with NuSMV. Especially
in bounded model checking (BMC), the ∃-step semantics often signif-
icantly outperforms the traditional interleaving semantics without any
substantial blowup in the BMC encoding as a SAT formula.

1 Introduction

This paper describes a method that allows UML state machine models en-
riched with a Java-like object oriented action language to be efficiently model
checked with symbolic model checking techniques. We describe the theoretical
background of a tool that encodes the transition relation of these object based
communicating state machines in the NuSMV [1] model checker input language
in a novel way that, in particular, makes the search for short counterexamples
competitive with the state-of-the-art explicit state model checker Spin [2].

The model checking approach our encoding is best suited for is bounded model
checking (BMC) [3] that has been introduced as an alternative to binary deci-
sions diagrams (BDDs) to implement symbolic model checking. The main con-
tributions of our work are symbolic step semantics encodings of the transition
relation for object based communicating state machines. Similarly to partial or-
der reduction techniques such as stubborn, ample, persistent, or sleep sets for
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explicit state model checking (see e.g., [4]) the idea is to exploit the concurrency
available in the analyzed system to make the model checking for it more effi-
cient. The main idea in the above mentioned partial order reduction methods is
to try to generate a reduced state space of the system by removing some of the
edges of the state space while still preserving the property (such as the existence
of a deadlock state) being verified. However, the considerations for BMC are
usually quite different from explicit state model checking. Instead of removing
edges from the state space trying to minimize the size of the reduced state space,
the idea here is to try to minimize the bound needed to reach each state of the
system. Our approach will not remove any edges but will instead add a number
of “shortcut edges” to the state space of the analyzed system, intuitively exe-
cuting several actions at the same time step, as allowed by the concurrency of
the system being analyzed. The hope is that by making more states reachable
with smaller bounds, the worst case exponential behavior of the bounded model
checker wrt. the bound k can be alleviated by allowing bugs to be found with
smaller values of k. The decrease in the bound k needs of course to be balanced
against the size of the transition relation encoding as well as the efficiency of the
SAT checker in solving the generated BMC instances.

As the system model we consider object based communicating state machines,
a model tailored to capture the essential data manipulation features of UML state
machines when enriched with a Java-like object oriented action language. The
work aims at analyzing object oriented data communications protocol software
designed using UML state machines, see [5]. The model checking tool we have
developed can also handle other aspects of UML state machines not covered in
this paper for the sake of clarity, see Sect. 4 for details.

Our encoding is a significant generalization of the approach of Rintanen [6]
on AI planning, where the notion of ∃-step semantics for planning problems was
first systematically employed. There are the following substantial differences to
this earlier work. First of all, our setup employs a UML state machine based
model of concurrency enriched with asynchronous message passing and full ob-
ject based data handling features such as dynamic object references. We show
how the ∃-step semantics can still be efficiently encoded with a full Java-like ac-
tion language. The main challenge is indeed the handling of the complex action
language parts of the encoding, something that is non-existent in the AI plan-
ning domain. Secondly, our approach also introduces the novel use of a dynamic
dependency relation to optimize the encoding even further. This allows for ex-
ample concurrent attribute access of different instances of the same object at
the same time step. The approach of Rintanen is based on a static dependency
relation.

Other Related Work. In the area of SAT based BMC, Heljanko was the first
to consider exploiting the concurrency in encoding the transition relation [7].
That paper considers BMC for 1-bounded Petri nets using the ∀-step semantics
(the classical Petri net step semantics, see e.g., [8]). The intuitive idea is that a set
of actions can be executed at the same time step in ∀-step semantics if they can
be executed in all possible orders. In the area of SAT based AI planning already
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the early papers of Kautz and Selman used ∀-step semantics [9] (see also [6]).
The work of Dimopoulos et al. was the first one to use an ∃-step semantics like
approach in hand optimized planning encodings of [10], the idea of which was
later formalized and automated in the SAT based planning system of Rintanen
et al. [6,11]. On the BMC side, Ogata et al. [12] and Jussila et al. [13,14] both
show other approaches to obtaining an optimized transition relation encoding
for 1-bounded Petri nets and labeled transition systems (LTSs), respectively. A
nice overview of many optimized transition relation encodings for LTSs is the
doctoral thesis of Jussila [15].

2 Systems and Semantics

In this paper we consider a class of systems which are composed of a finite
set of asynchronously executing objects communicating with each other through
message passing and data attribute access. The behavior of each object is defined
by a state machine. For instance, Figs. 1(a)–(c) show a part of a simple heart beat
monitor system described in UML state machines with Java-like action language
annotations. The dynamic behavior of a system is captured by its interleaving
state space

M = 〈C, cinit, Δ〉,

where C is the set of all global configurations, cinit ∈ C is an initial global configu-
ration, and the transition relation Δ ⊆ C × A × C describes how configurations
may evolve to others: 〈c, a, c′〉 ∈ Δ iff the configuration c can change to c′ by
executing an action a ∈ A. As an example, Fig. 1(d) shows a part of the state
space (ignore the dashed arrow for a while) of the system in Figs. 1(a)–(c); if the
action 〈o1, t22〉 (corresponding to object o1 firing its transition t22) is executed
in configuration c1, it changes to c2. We say that a configuration c′′ is reachable
from a configuration c if there exist a1, . . . , ak and c0, c1, . . . , ck for some k ∈ N

such that (i) c = c0, (ii) ∀1 ≤ i ≤ k : 〈ci−1, ai, ci〉 ∈ Δ, and (iii) ck = c′′.
The basic idea in ∃-step semantics exploited in this paper is to augment

the state space with “shortcut edges” so that, under certain conditions, several
actions can be executed “at the same time step”. This is formalized in the
definition below.

Definition 1. The ∃-step state space corresponding to the interleaving state
space M = 〈C, cinit, Δ〉 is the tuple

M∃ = 〈C, cinit, Δ∃〉

where the transition relation Δ∃ ⊆ C × 2A × C contains a step 〈c, S, c′〉 iff

1. the set of actions S = {a1, . . . , ak} is finite and non-empty, and
2. there is a total ordering a1 ≺ · · · ≺ ak of S and configurations c0, c1, . . . , ck ∈

C such that (i) c = c0, (ii) ∀1 ≤ i ≤ k : 〈ci−1, ai, ci〉 ∈ Δ, and (iii) ck = c′.
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Fig. 1. A part of a simple heart beat monitor system

Continuing the running example, the dashed arrow in Fig. 1(d) denotes the step
〈c1, S, c4〉 with S = {〈o1, t22〉, 〈o4, t7〉}. The actions in the step can be executed
in the order 〈o4, t7〉 ≺ 〈o1, t22〉 but not in 〈o1, t22〉 ≺ 〈o4, t7〉 as executing 〈o1, t22〉
disables 〈o4, t7〉.

By definition it holds that the ∃-step state space includes the interleaving state
space in the sense that 〈c, a, c′〉 ∈ Δ implies that the unit step 〈c, {a}, c′〉 is in Δ∃.
Conversely, if 〈c, S, c′〉 belongs to Δ∃, then there is a finite sequence of configu-
rations leading from c to c′ in the interleaving state space. Therefore, the set of
configurations reachable from a given configuration is equal for the interleaving
and the ∃-step state space. Note that the definition of ∃-step semantics is a purely
semantic one; in the symbolic encoding given later, not all possible non-unit steps
will be considered but only those that follow conveniently without complicating
and growing the size of the encoding too much w.r.t. the one for the interleav-
ing semantics. For example, similarly to [6], we require all actions of a step to be
enabled already in the current configuration c = c0. However, all unit steps will
be included in order to preserve the soundness and completeness of the resulting
encoding for the purpose of checking the reachability of desired/unwanted config-
urations. For complexity results on the semantic definition of ∃-step semantics in
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the AI planning domain, see [6], which also similarly soundly underapproximates
the ∃-step semantics in its implementation.

2.1 Object Based State Machine Models

We next give a brief description of the class of systems analyzed in this paper.
Refer to the technical report version of this paper [16] for the formal definitions.

We consider systems composed of a fixed and finite set O of objects. Each
object is an instance of a class, and each class is composed of a finite set of typed
attributes and a state machine. A state machine consists of a finite set of states,
one of which is the initial state, and a finite set of transitions. Each transition has
a source state and a target state, a trigger, a guard, which is an action language
expression of Boolean type, and an effect, which is a list of action language
statements. A trigger is of the form sig(x1, . . . , xk), where sig is a signal from a
finite set Sigs , and the xi are attributes of the class owning the state machine.
The number and types of the xi must match the predefined parameter types of
the signal. A special signal δ ∈ Sigs with no parameters models spontaneously
triggered transitions. For example, state measuring is both the source and the
target of transition t22 in Fig. 1(b). The trigger of t22 is tick(bps), and the guard
of t22 is implicitly true.

Objects can send and receive messages of the form sig [v1, . . . , vk], where
sig 
= δ is a signal and the values vi are message arguments. The number and
types of arguments correspond to the parameter types of sig . We denote the
set of all messages by Msgs . During execution, messages sent to an object are
placed in a queue, and an object can consume a message from its queue either by
firing a transition triggered by the corresponding signal or by implicit consump-
tion, which means discarding a message that is not triggering any transitions.
Spontaneously triggered transitions are fired without consuming messages.

A global configuration c of the system consists of, for each object o, (i) the
currently active state of o, which is one of the states in the state machine of the
class of o, (ii) the value of the instance o.x of each attribute x of the class of o,
and (iii) the contents of the input queue of o, which is a sequence of messages.
We will call the frontmost (oldest) message in the queue the current message
of o. The initial configuration cinit is such that all objects are in their initial
states and all input queues are empty.

The actions of the system are the transition instances 〈o, t〉 and the implicit
consumption actions 〈o, impcons〉, where o is an object and t is a transition
in the state machine of o. A transition instance 〈o, t〉 is enabled in a global
configuration c if (i) the source state of t is active in o, (ii) the guard of t
evaluates to true in the context of o, and (iii) either the trigger of t is δ() or o
has a current message whose signal matches the trigger signal of t. Of the global
configurations in Fig. 1(d), the transition instance 〈o4, t6〉 is only enabled in c2,
in which the current message of o4 is refresh() and o2.inval ≤ 2.

An enabled action can be executed in a global configuration. Firing transition
t in object o, or more formally, executing an enabled transition instance 〈o, t〉 in a
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global configuration c, leads to a new global configuration c′ that is obtained from
c by (i) assigning the argument values of the current message of o to the attributes
mentioned in the trigger of t, (ii) removing the currentmessage fromthe inputqueue
of o, (iii) executing the effect of t in the context of o, and (iv) making the target of t
the new active state of o. If t is a spontaneously triggered transition, i.e. the trigger
of t is δ(), then points (i) and (ii) above are not performed.

An implicit consumption action 〈o, impcons〉 is enabled if (i) the input queue
of o is not empty, and (ii) there is no enabled transition instance 〈o, t〉 such that
the trigger of t is not δ(). Executing an enabled implicit consumption action
〈o, impcons〉 in a global configuration c leads to a global configuration c′ that
is equal to c except that the current message of o is removed.

The interleaving state space is now defined as the tuple M = 〈C, cinit, Δ〉,
where C is the set of all global configurations, cinit ∈ C is the initial configuration,
and the transition relation Δ ⊆ C × A × C consists of the triples 〈c, a, c′〉 such
that the transition instance or implicit consumption action a is enabled in c and
executing a in c leads to c′ by the above rules.

Action Language. In the sequel, we fix a simple Java-based action language
[17] for expressing the guards and effects of transitions. The type system con-
sists of the Boolean type B, the 32-bit signed integer type, and for each class
C the reference type TC with domain {o ∈ O | class of o is C} ∪ {null}. As in
Java, static typing rules apply. The supported expressions are: (i) literals true,
false, null, and 32-bit signed integer literals, (ii) the this reference, (iii) at-
tribute access expressions of the form refexpr.x, where the type of refexpr is TC

and x is an attribute of class C, and (iv) infix expressions leftexpr op rightexpr ,
where op is one of +, -, *, /, %, &, ^, |, >, <, >=, <=, ==, or !=, with Java seman-
tics [18]. The only data accessible to expressions is attribute values reachable by
following references. In particular, an expression cannot read the active state or
the input queue of any object. An unqualified attribute name x is shorthand for
this.x.

The kinds of statements of the language are: (i) assignments of the form
refexpr.x = rhsexpr;, (ii) send statements of the form send sig(arg1, . . . , argk)
to targetexpr;. When a send statement is executed, the input queue of the
object referred by targetexpr is appended with the message sig [v1, . . . , vk], where
each vi is the value of argi, and (iii) assertions of the form assert condexpr;.
We want to check that condexpr is never false when an assertion is executed.

The effect of a transition is an arbitrary list of statements. However, we require
that for each transition t and class C, there is at most one send statement in the
effect of t whose targetexpr has type TC . The reason for this is that the symbolic
encoding relies on the fact that in one step, at most one message is sent to each
object.

Method calls are not directly supported, but a non-recursive call can emulated
by either inlining it at the call site or by modeling it as a pair of asynchronous
message transmissions, one for the invocation and one for the return.
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3 Symbolic Encoding

The encoding of a transition relation is based on constraints involving state
variables, whose valuation represents a global configuration, next-state variables,
whose valuation represents the global configuration after a step, input variables
whose values are only limited by the constraints, and derived functions that are
defined over the variables. The basic idea is that all constraints are satisfied if
and only if there is a step (in a subset of Δ∃) from the configuration represented
by the values of state variables to the configuration represented by the next-
state variables. The desired properties of the system are encoded as a set of
invariants that are to be verified using model checking. Many of the variables
and functions have values in the Boolean domain. Non-Boolean variables and
functions have a finite domain and thus can be booleanized to enable the use of
SAT- and BDD-based techniques.

To keep the state space finite, we restrict the analysis to bounded global config-
urations, setting an upper limit qsize to the number of messages in any queue.
Let M = 〈C, cinit, Δ〉 be an interleaving state space, and let CB be the set of con-
figurations c ∈ C such that the length of the input queue of o in c is at most qsize

for all objects o. The bounded interleaving state space is MB = 〈CB , cinit, Δ
B〉,

where ΔB =
{

〈c, a, c′〉 ∈ Δ | c, c′ ∈ CB
}

. As the semantics of Sect. 2.1 allows
queues to grow indefinitely, by this restriction we effectively disregard all exe-
cutions of the system where any queue at any point contains more than qsize

messages. Consequently, some reachable configurations of the system may be
omitted in the analysis. Whether or not such omission occurs could be detected
by adding a suitable invariant to check, and if needed, qsize could be incre-
mented to cover a larger set of the reachable configurations.

Fixed Ordering of Actions in Steps. We fix an arbitrary total order ≺ of
the set of actions A. The intuitive idea is that instead of considering all possible
orderings of actions as the ∃-step semantic definition allows, ≺ gives us one
static order in which the executability of actions in a step will be guaranteed.
To do this, the encoding must capture the state changes done by each action,
and disallow all steps where a value modified by some action is (explicitly or
implicitly) read by an action that is greater wrt. the order ≺. By doing this,
we ensure that all of the ∃-steps allowed by the encoding are executable in the
order given by ≺.

We will thus get a different encoding for each choice of ≺. The only require-
ment is that if o1, o2 ∈ O and t2 is a transition in the state machine of o2, then
〈o1, impcons〉 ≺ 〈o2, t2〉 must hold. In words, all implicit consumption actions
must precede all transition instances in the total order. The reason for this will
be discussed in Sect. 3.4.

The choice of a good total order is an interesting question that we have left
for further study. A set of actions is independent if no action reads any part
of the system state modified by another action. Notice that an independent
set of enabled actions can always be executed in all orders, and thus the ∃-step
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semantics always allows a set of independent actions to form an ∃-step for any
selection of the total order ≺.

Step Encoding Overview. At a very coarse level, the encoding of ∃-steps
contains three sets of constraints as follows.

1. For all actions a and all attributes x̂: if a is executed and it writes to x̂, then
the value of x̂ in the next global configuration is equal to the written value
as if a was executed alone.

2. For all attributes x̂: if no executed action writes to x̂, then its value remains
unchanged in the next global configuration.

3. For all actions a− and a, and all attributes x̂: if both a− and a are executed
and a− ≺ a and a− writes to x̂, then a does not read from x̂.

Constraint sets 1 and 2 together correspond to an encoding of parallel execu-
tion of actions. Any non-conflicting set of enabled actions can be executed at the
same time, and the written values are computed independently for each action.
Several actions are allowed to write to the same attribute at the same step, but
only if the value written by each action is the same. For example, if action a1
has the effect o.x = o.y; and action a2 has the effect o.x = o.y + 1;, they
cannot both be executed because there is no next-state value of o.x that satisfies
the constraints. However, the parallel encoding allows the concurrent execution
of a1 together with another action a3 whose effect is o.y = o.x;. Such a step
swaps the values of o.x and o.y. This does not correspond to the sequential
execution of a1 and a3 in either order, and thus we want to rule out non-∃-steps
like this.

For this reason, we add the further constraint set 3 of step constraints. These
ensure that for any two concurrently executed actions a− ≺ a, the action that
is greater w.r.t. the total order does not depend on any values written by the
other action, and thus parallel execution leads to the same global configuration
as executing first a− and then a.

Three Alternative Encodings. We present three different symbolic encod-
ings, namely an interleaving encoding, a static ∃-step encoding and a dynamic
∃-step encoding. All three encodings contain all unit steps in the sense that if
〈c, a, c′〉 ∈ ΔB and the valuations of state and next-state variables represent c
and c′ respectively, then there is a valuation of input variables such that the
constraints are satisfied. Conversely, nothing but ∃-steps that respect the order
≺ are allowed by the encodings. Let MB

∃ = 〈CB , cinit, Δ
B
∃ 〉 be the state space

obtained from MB by the definition of ∃-step semantics with the further restric-
tion that the total ordering of the set of actions S in each step (the ordering
in item 2 of Definition 1) respects the fixed order ≺. If the valuation of state
variables represents a bounded configuration c ∈ CB and the constraints are
satisfied, then the valuation of next-state variables represents a bounded config-
uration c′ ∈ CB and there is a set of actions S ⊆ A such that the step 〈c, S, c′〉
belongs to ΔB

∃ . Furthermore, in the interleaving encoding, S only contains one
action, and thus every step is a unit step.
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... ... ...

Active=update
InputQ=〈. . .〉
succ=o12

data=65

o11:Node
Active=update
InputQ=〈. . .〉
succ=o13

data=70

o12:Node
Active=update
InputQ=〈. . .〉
succ=o13

data=75

o13:Node ...

update ready

t3: δ() /
succ.data = succ.data + 1;

(a) Global configuration (b) State machine of class Node

Fig. 2. An example for illustrating static and dynamic ∃-steps

The definitions of the three encodings overlap for the most part, and the dif-
ferences are stated explicitly. The difference between static and dynamic steps is
that in static steps, whether actions a1 and a2 can be executed concurrently de-
pends only on a1 and a2. In dynamic steps, it also depends on the current global
configuration, in particular, on the values of attributes. Consider the global con-
figuration in Fig. 2(a) consisting of three objects of class Node. Transition t3 is
enabled both in object o11 and in o12. Because the action 〈o11, t3〉 increments
attribute data in o12 and 〈o12, t3〉 increments data in o13, neither action reads
a value written by the other. The dynamic step encoding allows 〈o11, t3〉 and
〈o12, t3〉 to be executed concurrently in this global configuration. However, in
some other global configuration the succ attribute in o11 and o12 might refer to
the same object, so the two actions might read and modify the same attribute. As
a safe statically computed approximation, the static step encoding never allows
executing 〈o11, t3〉 and 〈o12, t3〉 concurrently.

3.1 State Variables

The set of state variables contains three kinds of elements for each object o.

1. Active(o, s), where s is a state in the state machine of o, is true iff s is the
current active state in o.

2. AttrVal(o, x), where x is an attribute of the class of o, determines the current
value of o.x and has the same domain as the type of x.

3. InputQ(o) with domain Msgs0 ∪· · ·∪Msgsqsize determines the contents of the
input queue of o.

Given a bounded global configuration, the values of state variables can be de-
rived in the obvious way. The corresponding next-state variables are denoted by
next (Active(o, s)), next (AttrVal(o, x)), and next (InputQ(o)), respectively.

3.2 State Machines and Queues

This section gives a rough overview of the encoding of state machine control
logic. A more detailed definition can be found in [16].

The control logic constraints are responsible for ensuring that in the context of
a single object o ∈ O, (i) at most one transition instance or implicit consumption
action is executed in one step, (ii) an action is executed only if it is enabled in
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the global configuration represented by the state variables, and (iii) the variables
next (Active(o, s)) correctly reflect the active state after the step.

Let o ∈ O be an object. The input variable Dispatch(o) with domain Sigs ∪
{none} determines which message sig[. . .], if any, is being consumed by o. For
each transition t in the state machine of o, the input variable Fire(o, t) determines
whether t is being fired in o. We define the actions S ⊆ A of the current step as
the set consisting of all transition instances 〈o, t〉 such that Fire(o, t) is true, and
all implicit consumption actions 〈o, impcons〉 such that Fire(o, t) is false for all
t but Dispatch(o) 
= none.

For example in the state machine of Fig. 1(c), the next-state variable related
to state showAvgBps is fixed by the constraint next (Active(o, showAvgBps)) ⇔
Fire(o, t8) ∨

(

¬Fire(o, t9) ∧ Active(o, showAvgBps)
)

, and the enabledness check for
the action 〈o, t8〉 is encoded in the constraint Fire(o, t8) ⇔

(

(Dispatch(o) =
fbutton) ∧ Active(o, showBps)

)

.
Object o is scheduled if it is consuming a signal or firing a spontaneously

triggered transition, formalized in the function definition

Scheduled(o) :=
(

Dispatch(o) 
= none
)

. (1)

To rule out an empty step with no actions, we require that at least one object
is scheduled in each step by the constraint

∨{

Scheduled(o) | o ∈ O
}

. (2)

Furthermore, there are queue constraints ensuring that consumed messages
are removed from the front of the input queue and received messages are added to
the back of the queue. The input variable NewMsg(o) with domain Msgs∪{none}
denotes the message possibly being sent to o. Queue overflows are prevented by
specialized constraints, disallowing transitions into global configurations that are
not in CB .

3.3 Effects and Data

Expressions. All data manipulation in the effects of transitions is based on
evaluating expressions. We define a function Eval(expr) that gives the value of
expression expr . For clarity, we leave out the context in which the expression
is evaluated; a more rigorous treatment can be found in [16]. Evaluation of
constant and infix expressions is straightforward, given the encodings for all infix
operators. In the context of an object o, the value of Eval(this) is o. Attribute
access expressions of the form refexpr.x̂ are encoded as case switches over all
objects of the type of refexpr . For example, the expression succ.data in Fig. 2(b)
translates in the context of o11 to the formula

Eval(succ.data) := if

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

AttrVal(o11, succ) = o11 : AttrVal(o11, data)
AttrVal(o11, succ) = o12 : AttrVal(o12, data)
AttrVal(o11, succ) = o13 : AttrVal(o13, data)
else : 0.
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Effects. The effects of transitions can modify the global configuration by assign-
ing values to attributes and by sending messages to objects. For each transition
instance 〈o, t〉, each object ô, and each attribute x̂ of the class of ô, we de-
fine functions Sendo,t(ô) and Writeo,t(ô, x̂) that evaluate to true if the transition
instance is executed and sends a message to ô or assigns to ô.x̂, respectively.
Assignment can occur explicitly by an assignment statement or implicitly by
message argument reception.

These functions are used for determining the next global configuration in the
following way. If the effect of a transition t in the state machine of a class C
contains a send statement send sig(arg1, . . . , argm) to targetexpr;, we add for
each object o of class C and each object ô of the type of targetexpr the constraint

Sendo,t(ô) ⇒
(

NewMsg(ô) = sig [Eval(arg1), . . . , Eval(argm)]
)

, (3)

which fixes the message received by ô in case 〈o, t〉 is executed. Similarly, the
value assigned to ô.x̂ by a transition instance 〈o, t〉 is fixed by the constraint

Writeo,t(ô, x̂) ⇒
(

next (AttrVal(ô, x̂)) = Tempo,t(ô, x̂)
)

, (4)

where Tempo,t(ô, x̂) evaluates to the value of ô.x̂ after executing the effect of t in
object o. This is defined using the Eval function. For example in Fig. 2(b),

Tempo11,t3(o12, data) := if

{

AttrVal(o11, succ) = o12 : Eval(succ.data + 1)
else : AttrVal(o12, data).

For each transition instance 〈o, t〉 and each assertion assert condexpr; in
the effect of t, we check that the invariant Fire(o, t) ⇒ Eval(condexpr ) holds.

Frame Conditions. Let Θ ⊆ A be the set of all transition instances. The only
situation when NewMsg(ô) is not fixed by (3) is when Sendo,t(ô) is false for all
transition instances 〈o, t〉 ∈ Θ. Similarly, next (AttrVal(ô, x̂)) is not fixed when all
functions Writeo,t(ô, x̂) are false. To fix these, we add the constraints

¬
∨ {

Sendo,t(ô) | 〈o, t〉 ∈ Θ
}

⇒
(

NewMsg(ô) = none
)

, (5)

¬
∨{

Writeo,t(ô, x̂) | 〈o, t〉 ∈ Θ
}

⇒
(

next (AttrVal(ô, x̂)) = AttrVal(ô, x̂)
)

. (6)

3.4 Step Constraints

In the interleaving encoding, at most one object is scheduled at a time, as re-
quired by the constraint

AtMostOne ({Scheduled(o) | o ∈ O}) . (7)

Consequently, at most one action is executed in each step. A predicate of the
form AtMostOne (P ) evaluates to true if and only if zero or one of the predicates
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in set P evaluates to true. This can be expressed with O(|P |) binary Boolean
connectives.

In the ∃-step encodings, (7) is replaced by more liberal constraints as follows.
We require that an action must not send a message to an object if a preceding
action has already done so, and it must not read an attribute that a preceding
action has written. This is formalized in the constraints

∨{

Sendo−,t−(ô) | 〈o−, t−〉 ≺ 〈o, t〉
}

⇒ ¬Sendo,t(ô), (8)
∨{

Writeo−,t−(ô, x̂) | 〈o−, t−〉 ≺ 〈o, t〉
}

⇒ ¬Reado,t(ô, x̂). (9)

In the implementation, we employ maximal sharing of subformulas in the left-
hand sides of (5), (6), (8), and (9), resulting in an encoding that is linear instead
of quadratic in the number of transition instances. Furthermore, the left-hand
sides of (8) and (9) are “free” in the sense that they are already present as
subformulas of (5) and (6), and can therefore be shared.

The function Reado,t(ô, x̂), which appears in constraint (9), is defined so that
it evaluates to true if the transition instance 〈o, t〉 is executed and reads the
attribute ô.x̂. The constraint says that a transition instance 〈o, t〉 that reads
an attribute ô.x̂ can only be executed if that attribute is not modified by any
concurrently executed transition instance that precedes 〈o, t〉 in the total order.
This means that in the global configuration that would result from executing
the preceding transition instances, the value of ô.x̂ is still the same as in the
starting configuration represented by the state variables. This justifies the use
of AttrVal(ô, x̂) in evaluating the expressions in the effect of 〈o, t〉. Also notice
that (4) forbids executing two transition instances that would assign a differ-
ent value to the same attribute, and (8) prevents two transition instances from
sending to the same object.

Implicit consumption actions cannot send messages or modify attributes.
However, an implicit consumption action 〈o, impcons〉 can implicitly read an
attribute because the enabledness of 〈o, impcons〉 might depend on the enabled-
ness of a transition instance 〈o, t〉, which in turn might depend on an attribute
that is mentioned in the guard of t. By setting the requirement that implicit
consumption actions precede all transition instances in the total order, we rule
out the possibility of 〈o, impcons〉 implicitly reading an attribute that has been
written by a preceding action. No extra constraints are thus needed.

In order to strictly confine the analysis to the bounded transition relation ΔB
∃ ,

additional step constraints are placed that prevent a queue from growing past
its bound and shrinking back within a single step. The details are in [16].

Static and Dynamic Steps. The difference between the two ∃-step encodings
is in the definitions of Send, Write, and Read. In dynamic steps, these functions are
evaluated accurately using the input and state variables. For example, Sendo,t(ô)
is defined as Fire(o, t)∧

(

Eval(targetexpr) = ô
)

, and Reado,t(ô, x̂) is true iff Fire(o, t)
is true and Eval(refexpr ) = ô is true for any subexpression of the form refexpr .x̂
in the guard or effect of t. The same definitions are used in the interleaving
encoding.
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In static steps, overapproximations are used. If the guard or effect of transi-
tion t does not contain x̂ in any subexpression, then Reado,t(ô, x̂) is trivially false
for all o and ô. Otherwise, Reado,t(ô, x̂) is defined as Fire(o, t). Conceptually this
means that when 〈o, t〉 is executed, it reads the attribute x̂ of all objects that
contain it. Equivalently, Sendo,t(ô) is defined as Fire(o, t) if the effect of t con-
tains any send statement to an object of the same class as ô and false otherwise,
and similarly for Write. This approximation strengthens the step constraints (8)
and (9) and also makes the constraints static in the sense that they no longer
refer to the state variables. As an optimization, if transition t only accesses x̂
using the expression this.x̂, then it is known that the action 〈o, t〉 does not read
ô.x̂ if ô 
= o, and therefore Reado,t(ô, x̂) is defined as false in these cases. The
same optimization is applied to Send and Write.

Because the function Sendo,t(ô) is an approximation in the static step encod-
ing, it may evaluate to true even though no message is being sent to ô. For this
reason, in static steps we replace (3) with two constraints

Sendo,t(ô) ∧
(

Eval(targetexpr) = ô
)

⇒
(

NewMsg(ô) = sig [. . .]
)

, (10)

Sendo,t(ô) ∧ ¬
(

Eval(targetexpr) = ô
)

⇒
(

NewMsg(ô) = none
)

. (11)

A similar correction does not need to be made to (4) because Tempo,t(ô, x̂) is
evaluated accurately even in the static step encoding.

Consider again the setting of Fig. 2. Assuming that 〈o11, t3〉 ≺ 〈o12, t3〉 are
the two first transition instances in the total order, we get from (9) the step
constraint

Writeo11,t3(ô, data) ⇒ ¬Reado12,t3(ô, data) (12)

instantiated for each ô ∈ {o11, o12, o13}. In dynamic steps, these expand to

Fire(o11, t3)∧
(

AttrVal(o11, succ) = ô
)

⇒ ¬
(

Fire(o12, t3)∧ (AttrVal(o12, succ) = ô)
)

,

allowing, for example, executing 〈o11, t3〉 and 〈o12, t3〉 concurrently in the global
configuration of Fig. 2(a). In static steps, all three instantiations of (12) reduce
to the same constraint Fire(o11, t3) ⇒ ¬Fire(o12, t3), which disallows concurrent
execution of the two actions in any global configuration. In this example, static ∃-
step semantics yields a smaller encoding, but dynamic ∃-step semantics permits
more concurrency in a single step.

3.5 Size of the Encodings

Let |M | be the size of the model, containing the definition of every class, at-
tribute, signal, and state machine, and the textual definitions of guards and
effects. Assuming that common subformulas are shared between constraints, the
size of all three encodings is O(|M |(qsize · |O| + |O|2) log |O|). The term log |O|
is the required number of bits to represent the values of attributes and expres-
sions of reference type. The term |O|2 appears because objects can refer to each
other arbitrarily, and it seems unavoidable in the presence of dynamic references.
The total size of queue and state machine encodings without data or transition
effects is O(|M | · qsize · |O| log |O|).
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The worst-case size for the data and step encoding can be seen in (4). For
each assignment statement (quantity bounded by |M |), there are O(|O|2) in-
stantiations of (4), each of size O(log |O|) because of the comparison of object
references. Thus the total size sums up to O(|M | · |O|2 log |O|) even in the inter-
leaving encoding. In the ∃-step encodings, there are O(|M | · |O|2) additional step
constraints, but they do not dominate the total encoding size in the experiments.

4 Experimental Results

We have implemented the symbolic encoding described above.1 The tool assumes
the system models to be described with a subset of UML, the main additions
to the above encoding being that state machines also support (i) hierarchy, (ii)
completion events via the busy-quiescent construction given in [5], (iii) defer-
ring of events, and (iv) initial and choice pseudostates (see [19] for a symbolic
interleaving semantics encoding of such extended state machines). It outputs
the encoding as a NuSMV [1] program and currently supports model checking
queries for deadlocks, implicit consumption of messages, assertion violations, and
action language run-time errors. The tool chooses the fixed ordering of actions
arbitrarily but deterministically based on the identifiers in the input file. The
following experiments were run on a PC machine with a 2 GHz AMD Athlon 64
processor, 2 GB of memory, and Debian Linux operating system. We used ver-
sion 2.4.3 of NuSMV and limited the available memory to 1.5 GB and time to
ten minutes. The width of integer attributes in the encoding was 32 bits and the
input queue size was two.

We used the following models. (i) SCP is a simple communication protocol
with three active objects (environment, sender, and receiver) and three cycling
phases (connection establishment, data transfer, connection release). (ii) travel
is an essentially sequential resource allocation process modeling a travel agent
accessing a database, involving 4 active objects. (iii) mtravel is a variant of travel
with 3 competing travel agents and databases organized in a ring. (iv) giop1 2
has been adapted from the General Inter-ORB Protocol model [20], with an
uninitialized variable introduced in the adaptation.

Table 1 shows the results. The column “sem.” gives the semantics (interleav-
ing, static ∃-steps, or dynamic ∃-steps) and the smallest bound for a counterex-
ample under it, “SBMC zchaff” gives the minimum and maximum running time
(in seconds) of 10 runs of the incremental BMC algorithm [21,22] when ZChaff
is used as the SAT solver, “SBMC minisat” is the same with MiniSat as the
SAT solver, and “BDD invar” gives the running times of a BDD-based invariant
checking. The numbers in square brackets are the times used by the SAT solvers
instead of the total running times of NuSMV (especially on the model giop1 2,
the total running time is dominated by preprocessing overhead). M.O. means
that all runs exceeded the memory limit, and T.O.(x–y) means that all runs

1 The source code and the models used in the experiments are available at
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml

http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
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Table 1. Results

model + sem. k SBMC zchaff SBMC minisat BDD invar Spin DFS Spin DFS -i
property time time time time |cex| time |cex|
travel interl. 15 0.59–0.64 0.46–0.55 1.19–1.20 0.01–0.01 17–24 0.03–0.05 15–15
deadlock s.step 11 0.32–0.36 0.30–0.34 1.91–1.93

d.step 11 0.31–0.35 0.31–0.34 1.69–1.71

mtravel interl. 36 T.O.(21–22) T.O.(23–24) M.O. 0.01–43.58 71–103576 T.O.
deadlock s.step 14 5.87–10.73 3.26–5.03 M.O.

d.step 11 2.01–2.26 1.56–1.67 M.O.

SCP interl. 13 2.17–2.70 1.21–1.51 174.05–174.89 0.02–0.03 13–104 0.04–0.74 13–13
deadlock s.step 7 0.37–0.41 0.37–0.40 107.04–107.42

d.step 6 0.38–0.40 0.37–0.40 T.O.

SCP interl. 7 0.46–0.49 0.42–0.45 n.a. 0.01–0.01 12–24 0.02–0.04 7–7
implicit s.step 6 0.38–0.41 0.37–0.41 n.a.
cons. d.step 5 0.37–0.39 0.36–0.40 n.a.

giop1 2
runtime

interl. 14
293.09–338.47
[79.06–124.39]

250.15–261.90
[36.30–48.49]

n.a. 0.29–580.96 30–64 T.O.

errors
s.step 9

162.59–174.98
[6.71–9.73]

156.94–165.81
[2.16–3.34]

n.a.

d.step 8
156.57–162.53

[4.04–5.13]
154.23–158.20

[1.19–2.30]
n.a.

timed out; x and y give the minimum and maximum, respectively, of the bounds
that were reached before timeout. We check (i) deadlocks of the models SCP,
mtravel, and travel, (ii) whether implicit consumption of messages is possible in
the model SCP, and (iii) if the model giop1 2 has run-time errors. The latter
two properties are only checked with BMC but not with BDDs as the invari-
ant involves input variables; this is not accepted by the NuSMV BDD invariant
checking command.

Analyzing the sizes of SAT instances generated by NuSMV shows that the
proportion of ∃-step constraints in an instance is 4–8 % when static steps are
used, and 5–15 % when dynamic steps are used, depending on the model. This
verifies the presumption that using step semantics does not substantially increase
the size of the encoding.

From the results we see that using ∃-step semantics instead of interleaving
can (i) drop the bound required to find a counterexample, and (ii) more im-
portantly, quite radically reduce the running times of BMC algorithms. This is
especially true with models that contain lots of concurrency. E.g. on the model
mtravel using interleaving semantics, BMC could not reach the required bound
36 even if we gave 1 hour of time, while using step semantics a corresponding
counterexample is found within seconds. With BDDs, it seems in fact that the
interleaving semantics is quite competitive with the step semantics. This is an
interesting finding requiring further study. We also experimented with the BDD-
based breadth-first enumeration of reachable states in NuSMV and the findings
were that the step semantics indeed covered more states than the interleaving
semantics with the same number of iterations but it took more time to do so.

We also ran tests with the state-of-the-art explicit state model checker Spin [2]
that is designed especially for the analysis of this kind of models. The UML models
were automatically translated to the input language of Spin by a translation based
on that in [5]. The last two columns in Table 1 give the running times and lengths
of produced counterexamples of Spin with (i) the default depth-first search mode
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(“Spin DFS”), and (ii) the same with counterexample minimization option “-i”
enabled. Partial order reductions and state compression (“COLLAPSE”) were en-
abled in both modes. Different runs on the same model produced diverse results
as the order of variable and process declarations in the Spin model varied between
runs of the translator program due to some non-determinism in the libraries used.
As expected, Spin is superior on models with relatively small state spaces (SCP
and travel). On the models mtravel and giop1 2 containing more concurrency, Spin
sometimes consumes more time. More importantly, in cases it manages to find a
counterexample, the produced counterexamples are often much longer than the
minimal ones produced by BMC based methods. These very long counterexam-
ples are not as useful in debugging the system as it becomes much harder for the
user to locate the real source of the bug.

5 Conclusions and Future Work

We have shown how to exploit the concurrency in the transition relation en-
coding for object based communicating state machines. Especially in bounded
model checking, the proposed ∃-step semantics significantly outperform the tra-
ditional interleaving semantics approach, without any considerable blowup in
the encoding as a SAT formula.

Our experimental results show that when searching for short counterexam-
ples, symbolic model checking, especially with ∃-step semantics, can provide a
competitive approach to model checking of asynchronous message passing proto-
cols. This has traditionally believed to be a field where only explicit state model
checkers can be efficient. We show that by using bounded model checking with
our step encodings, we can find much shorter counterexamples than Spin does,
and achieve this with competitive running times.

One avenue for further study is the use of SAT modulo theories (SMT) solvers
to improve the performance of bounded model checking of systems containing
data. Our encoding can be fairly easily adjusted to do that. Also requiring further
study are the details of the way the ∃-step semantics needs to be restricted in
order to soundly accommodate the model checking of liveness properties along
the lines of [23,22]. And as the choice of the total ordering between actions in the
encoding affects which steps are considered, a statically chosen good ordering
might improve performance, but this needs further investigation.
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Abstract. Software product line engineering combines the individual develop-
ments of systems to the development of a family of systems consisting of com-
mon and variable assets.In this paper we introduce the process algebra PL-CCS
as a product line extension of CCS and show how to model the overall behavior
of an entire family within PL-CCS. PL-CCS models incorporate behavioral vari-
ability and allow the derivation of individual systems in a systematic way due to a
semantics given in terms of multi-valued modal Kripke structures. Furthermore,
we introduce multi-valued modal μ-calculus as a property specification language
for system families specified in PL-CCS and show how model checking tech-
niques operate on such structures. In our setting the result of model checking is
no longer a simple yes or no answer but the set of systems of the product line that
do meet the specified properties.

1 Introduction

A software product line is a set of software intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets [CN02]. Developing
a set of related systems as a product line, rather than every system individually, en-
ables the systematic exploitation of synergy effects. Product line concepts are, for exam-
ple, widely used in automotive production, in order to allow for individuality and high
customizability of vehicles, while at the same time keeping production cost low.

Modern vehicles are controlled by large sets of configurable electronic control units
(ECUs) which communicate via buses and gateways. In other words, they are highly in-
dividual, distributed, embedded systems on wheels. Due to the prevalence of new tech-
nologies, the complexity of vehicle systems will increase further. In order to be able to
guarantee high quality, security and safety requirements in future, the application of for-
mal verification and analysis techniques get more and more essential. However, in order
to be effectively applied in a product line context, formal modeling approaches as well
as the applied formal verification techniques, need to efficiently cope with variability.

Despite their importance for the development of software intensive systems, formal
modeling and especially verification techniques for product lines do not yet meet the
industrial needs.

Kishi et al. in [KNK05] proposed to use traceability in a product model in order to
automatically compose subsystem models of a configuration in order to model check
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that configuration. With this approach it is possible to automate the composition of
configurations, but it is still necessary to model check a model for each configuration
separately.

Modular verification approaches like the one introduced by Li, Krishnamurthi and
Fisler [LKF05] use compositional verification techniques in order to infer properties
of an assembled system from the properties of its assets. Interfaces of feature-oriented
modules contain constraints, similar to verification conditions that other modules must
satisfy at composition time. In their approach, these conditions are automatically de-
rived during feature verification. Configurations are verified individually, but results for
partly integrated configurations and modules, which have already been verified, can of
course be reused.

Larsen et al. defined a behavioral variability model for product line development
based on modal I/O automata [LNW07], which are an extension of Larsen’s and Thom-
sen’s Kripke modal transition systems [LT91]. Their aim is not to verify product specific
functional properties for configurations, but rather to verify the error free combinability
of interfaces. Error free composition is characterized by the absence of deadlocks. It
is not required that all possible configurations give an error free composition, but only
that there exist configurations that can avoid errors under suitable use.

Kripke modal transition systems are used in [FUB07] to study the notion of behav-
ioral conformance in the setting of software product lines.

In our approach we model the functional behavior of an entire product family in
a single model which explicitly incorporates behavioral variability. Compared to other
approaches which also contain the concept of variability in arbitrary development assets
such as requirement specifications, design models or test models [PBvdL05], we have
included the variability information into the behavioral model. In particular, the concept
of variability is also considered in the semantical model. In contrast to other techniques,
our model and the respective semantics allow the application of model checking tech-
niques. By this, we can reduce typical questions from product-line engineering to model
checking problems.

More specifically, this paper introduces PL-CCS as a variant of Milner’s CCS
[Mil95] designed to model the interaction of software components used in software
product lines. While Milner’s CCS is well-suited for describing the communication of
(closed) software systems, it lacks support for defining a set of systems. We extend
CCS by a variants operator ⊕, which allows to model alternative behavior, i.e. alter-
native processes, with the meaning that only one of the alternative processes will be
existing in the final (running) system. The semantics of an PL-CCS system is defined
in terms of a labeled transition system for product lines (PL-LTS), which is essentially
a multi-modal Kripke structure extending Kripke modal transition systems [LT91]. Ab-
stracting from the specification concept on top (in our case extended CCS), a PL-LTS
assigns a semantics to the so far only vaguely defined notion of variability. Note that de
Nicola et. al. [VN98] and Majster-Cederbaum [MC01] introduce as well an ⊕-operator
which represents a form a variability. However, the approach is not tailored to product
lines and does not study the question of verification.

The main benefit of the proposed modeling formalism is that it caters for automatic
verification by model checking. We introduce the multi-valued modal μ-calculus as



Modeling and Model Checking Software Product Lines 115

combination of Kozen’s modal μ-calculus [Koz83] and multi-valued μ-calculus as de-
fined by Grumberg and Shoham [SG05], yielding a property specification language suit-
able for specifying and checking properties of PL-CCS programs. More specifically, the
result of model checking a property for a PL-CCS program is the set of configurations
satisfying the property at hand and not only the answer if the property holds or not.

2 Product-Line CCS

In this section we introduce PL-CCS as an extension of Milner’s process algebra CCS
[Mil95]. PL-CCS is designed for modeling the behavior of an entire product line in a
way especially suitable for automatic verification by model checking.

2.1 Product Lines

Before giving a formal approach to our notion of product lines, let us consider an ex-
ample, and derive our formalism in an intuitive manner. Hereby, we will also fix the
terminology we use in the rest of this paper, mostly following [CN02], where a product
line is considered to be a set of systems sharing a common, managed set of features
that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets.

As usual, we consider individual systems (products) that are built from subsystems
in a compositional manner. Following CCS, we model the behavior of a system as well
as its subsystems as processes. The parallel operator ‖ known from CCS can be used to
express that the behavior of the compound system is defined by the parallel execution
of its subsystems.

For example, a car C consists—amongst other things—of an engine E, a locking
system LS , and an infotainment system IS , which operate in parallel. This is denoted
as:

C
def= E ‖ LS ‖ IS

In the product lines we consider, subsystems may be realized by alternative variants.
Entire subsystems may even be optional. For example, vehicles may be equipped with
different locking systems, such as (i) a central locking system LS central controlling
the locking of all doors, or alternatively (ii) a locking system LSkeyless , which allows
remote keyless entry via a key fob. Such variants can be specified in PL-CCS using the
binary variants operator ⊕. The usage of the variants operator can be understood as
offering a set of possible “choices” realizing a variant. Thus, the locking system can be
specified as follows:

LS def= LS central ⊕ LSkeyless

As not all vehicles in the specified product line may be equipped with an infotainment
system, we enrich PL-CCS with an optional operator 〈 〉, allowing the infotainment
system to be declared as optional, written as:

C
def= E ‖ LS ‖ 〈IS 〉

Both, the variants operator and the optional operator define a variation point. Given a
PL-CCS model for an entire product line, individual systems can be derived by making
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decisions for all variation points. More precisely, choosing for every variants operator
one variant and for every optional operator whether the optional subsystem is present or
not, yields a specific configuration. The configuration then defines uniquely one system,
also called product, that is derivable from the product line.

Note that CCS offers an operator + for expressing non-deterministic choice. Al-
though our variants operator ⊕ is to some extent similar to the CCS +, there are several
important conceptual as well as formal differences between both. Thus, both operators
are essential for PL-CCS (see also Rules 12 and 13 in Section 2.3).

2.2 PL-CCS – Syntax

In this section we introduce the syntax of PL-CCS programs, which allows us to define
design models for software product lines.

Let Id be a finite set of process identifiers and Σ by a finite set of input actions. Usu-
ally, P, Q, P1, . . . range over process identifiers and a, b, . . . range over input actions.
As in CCS, let A = Σ ∪ Σ̄ ∪ {τ} represent the set of communication actions, where
τ �∈ Σ ∪ Σ̄ represents the silent action, and, Σ̄ = {ā | a ∈ Σ} is the set of output
actions. Usually, α, β, . . . range over communication actions. By Nil , we denote the
atomic idle process.

The set P of all PL-CCS process expressions (or short processes) is generated by the
following grammar:

e ::= Q | Nil | α.e | e + e | e ⊕ e | e ‖ e | e[f ] | e\L (1)

where Q ∈ Id is a process identifier, α ∈ A is an action, L ⊆ A is a set of action
labels, and f : A 
→ A is a renaming function, i. e. a function respecting f(ā) = f(a)
and f(τ) = τ .

Thus, syntactically, PL-CCS extends CCS [Mil95] only by the binary variants opera-
tor⊕. An optional-operator 〈 〉 can be added to PL-CCS as the syntactical abbreviation:

〈P 〉 := P ⊕ Nil

In Section 2.3, where PL-CCS semantics is discussed, we will see that this abbreviation
meets our intuition, allowing us to confine in this technical presentation of PL-CCS to
the variants operator ⊕ only.

A process definition is an equation of the form P
def= e, where P ∈ Id

is a process identifier and e ∈ P is a PL-CCS process. We specify
the behavior of an entire product family by a PL-CCS program: A
PL-CCS program Prog is a tuple (E , P1), where E is a finite set of
process definitions and P1 ∈ Id is the distinguished main process
identifier of Prog . Typically, we denote a PL-CCS program by listing
its equations, assuming that the left-hand side of the first equation
is the main process identifier. Thus, we usually write only the set of
defining equations as shown aside.

P1
def= e1

P2
def= e2
...

Pn
def= en
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P ⊕

• ‖

P α Q Q

Q ⊕

• •

β1 Nil β2 Nil

Fig. 1. A program dependency graph

Well-formed PL-CCS programs. Our goal is to model software product lines which
require only an a priori finite number of decisions taken at variation points when deriv-
ing a specific system, which is the case for all product lines relevant in practice. So far,
however, as in CCS, PL-CCS allows the creation of new processes by using the parallel
operator ‖ within recursive process definitions. In combination with our ⊕-operator this
may potentially result in an unbounded number of variation points.

To avoid this, we consider only a (syntactically) restricted subset of all PL-CCS pro-
grams. The syntactical restriction is achieved by three conditions: completeness, finitely
configurable, and fully expanded, that are used to derive the notion of well-formed sys-
tems. For such well-formed PL-CCS programs we can define a compositional semantics
(see section 2.3) which is exactly what we require from a product line approach. In the
remainder of the section we successively introduce the syntactical restriction.

Definition 1 (complete PL-CCS program). We call a PL-CCS program with the set
of process definitions {P1

def= e1, . . . , Pn
def= en} complete, if all process identifiers Pi

on the left-hand sides of the defining equations are pairwise distinct and the defining
equations e1, . . . , en contain only process identifiers in the set {P1, . . . , Pn}.

In the following, we consider only complete PL-CCS programs. Now, we turn towards
the definition of a dependency graph of a PL-CCS program, which—similar to a control
flow graph for programming languages—reflects the dependencies of process defini-
tions in a program.

For a PL-CCS process e, let pt(e) denote the parse tree of e defined in the usual
manner as a tree labeled with operator symbols or process identifiers (in leafs). Given
a complete PL-CCS program

(

{P1
def= e1, . . . , Pn

def= en}, P1
)

, we define its program
dependency graph as the directed labeled graph given as follows: Its nodes comprise
those for left-hand sides of the equations, labeled P1, . . . , Pn, together with the nodes
of the parse trees for the right-hand sides of the equations. Its edges comprise the edges
of the parse trees plus edges connecting left-hand sides of equations Pi to the roots of
parse trees of the corresponding right-hand sides ei. Additionally, we add edges from
leafs of the parse trees labeled Pi to the node for the left-hand side of equation Pi = ei.
As an example, consider the following PL-CCS program whose program dependency
graph is shown in Figure 1.

P
def= (α.P ) ⊕ (Q ‖ Q) Q

def= β1.Nil ⊕ β2.Nil

We call a node labeled Q reachable from a node labeled P if there exists a path from
P to Q in its program dependency graph.
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Intuitively, a program dependency graph reflects the dependencies between the pro-
cess identifiers of a PL-CCS program with respect to its defining equations. A cycle in
this graph that contains a node labeled by a parallel operator might represent a recur-
sive process definition “spawning” an arbitrary number of copies of its own. If in such
a context, the variants operator ⊕ comes into play, an unbounded number of config-
uration selections would be possible. We therefore consider in the following PL-CCS
programs which forbid such a situation and thus are configurable within finitely many
configuration selections.

Definition 2 (finitely configurable PL-CCS program). We call a complete PL-CCS
program finitely configurable, if its program dependency graph has no cycle containing
a node labeled with ‖ from which a node labeled with ⊕ is reachable.

Consider Figure 1. While there is a cycle from P back to P from which a ⊕-operator
is reachable, the program is finitely configurable as this cycle does not contain a node
labeled ‖. If instead P

def= (α.P ) ‖ (Q ‖ Q), the program would not be finitely con-
figurable, as the cycle from P to P would contain the parallel operator, and, still the
⊕-operator of the second equation is reachable.

Note that the definition of finitely configurable does not characterize the programs
that are configurable within finitely many configuration selections, but is just a suffi-
cient condition. However, as it is (already) undecidable whether a CCS program yields
a finite or infinite state system, it is easy to see that it is also undecidable whether
the transition system defined by a PL-CCS program would make use of only finitely
many configuration selections. In the following, we therefore consider only on finitely
configurable PL-CCS programs.

There is a further restriction we want to make. Consider the two independent systems
P and R:

P
def= Q ‖ Q

Q
def= Q1 ⊕ Q2

vs. R
def= Q1 ⊕ Q2 ‖ Q1 ⊕ Q2

When considering the left system P one might understand its meaning as follows: (i) P
consists of two “instances” of the same variation Q. Hence, one selects once between
Q1 and Q2 and follows this choice for any occurrence of Q in P . However, if we would
specify P by expanding the definition of Q in the definition of P , we would get a system
like R, which represents another intention: (ii) In R, we now have two (independent)
variation points, which— though offering the same variants Q1 and Q2— might be
configured differently from each other.

So far, the structural semantics rules, as we introduce them in Section 2.3, are only
compositional for meaning (ii). Therefore—for the scope of this paper and to simplify
the technical treatment—we only consider systems like R, where every variants oper-
ator can be configured independently from the configuration of other variation points.
Note, that it is easy to extend our formalism to actually cope with both meanings, by
introducing a second alternative operator with a suitable semantics for the case of P .
However, as this would make the current presentation more technical, we refrain from
giving this extension in this paper.
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Definition 3 (fully expanded PL-CCS program). We call a complete and finitely con-
figurable PL-CCS program fully expanded, if its program dependency graph satisfies
the following: Removing all edges that are part of strongly connected components
(yielding a possibly not connected graph), there is at most one path from every node
to any ⊕ node.

Note, that a finitely configurable PL-CCS program which is not fully expanded can be
transformed into an equivalent fully expanded version.1 The Definitions 1 to 3 allow us
to characterize the set of well-formed PL-CCS programs, which will be the basis for the
rest of this paper.

Definition 4 (well-formed PL-CCS program). A PL-CCS program is well-formed, if
it is complete, finitely configurable, and fully expanded.

The rational for the syntactical restrictions leading to Definition 4 is that in a well-
formed PL-CCS program we can easily label each variants operator with a unique nat-
ural number by parsing over the PL-CCS program and attaching a fresh number to
every occurrence of a variants operator. This allows us to precisely define the concept
of a variation point: We call a uniquely labeled variants operator with number i ∈ N,
denoted by ⊕i, a variation point.

In practical applications, not all combinatorially possible configurations are mean-
ingful or allowed for various non-functional reasons. For example, recall the example
from Section 2.1: An OEM might always provide the more advanced keyless locking
system whenever a premium infotainment system is selected. Thus, whenever the (op-
tional) infotainment system is chosen, we have to select the keyless variant as well.
Such non-functional dependencies between different subsystems are usually captured
in a feature model. In their mathematical essence, feature models define a restricted set
of configurations. The framework described in this paper does not include such a depen-
dency model and has to be extended to cope with such restrictions. However, to keep
the presentation simple, we defer the formal treatment of such feature dependencies to
our future work.

2.3 Semantics of a PL-CCS Program

In the following, we define the semantics of a PL-CCS program. More precisely, we
introduce three different semantics, the flat semantics, the unfolded semantics, and
the configured-transitions semantics, and show how they are related. Basically, the
first two semantics are only introduced to motivate and justify the final semantics, the
configured-transitions semantics, which will be an appropriate basis for model checking
described in Section 3.

Flat Semantics. The flat semantics reflects the intuitive understanding of a PL-CCS
program: Every PL-CCS program can be understood as the set of all (plain) CCS
programs that can be derived by a total configuration of the PL-CCS program. More

1 This sentence is not to be understood in a mathematical sense, as no semantics for non-fully
expanded programs has and will be provided, which does not allow to define equivalence
precisely.
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precisely, given a well-formed PL-CCS program, we choose for every variants operator
either the process term on its left- or right-hand side and remove all the unselected terms
together with the respective ⊕ symbols from the PL-CCS program. For every such con-
figuration, this procedure results in a plain CCS program, which can be understood in
the usual way, e.g. with the semantics described by Milner [Mil80].

Technically, given a well-formed PL-CCS program Prog with n ∈ N variants op-
erators, we label every variants operator ⊕ uniquely with a number in {1, . . . , n}. The
individual configuration selection made for the ith ⊕-operator is stored in the ith entry
θi of the configuration vector θ ∈ {R, L, ?}n: The entry R represents the selection of
the right process, L represents the selection of the left process, and ? represents the sit-
uation that none of the two alternatives has been selected so far. We call a configuration
vector θ ∈ {R, L, ?}n fully configured if ∀i ∈ {1, . . . , n} : θi �= ?.

Given a well-formed PL-CCS program Prog with n variants operators and a fully
configured configuration vector θ ∈ {R, L, ?}n we define a function

config : P × {R, L, ?}n → R

where R is the set of CCS programs. The function config reduces Prog to a CCS pro-
gram V , where V is constructed by removing all terms in Prog which are not selected
according to θ.

This allows us to define the flat semantics of a PL-CCS program Prog as

[[Prog ]]Flat =
{

[[V ]]CCS | ∃θ : (config(Prog , θ) = V )} (2)

where [[V ]]CCS denotes the conventional CCS semantics of the CCS program V as
defined, e.g., in [Mil80] by means of SOS rules. Due to space limitations, we omit
to present the original CCS-SOS rules but refer to the PL-CCS-SOS-rules given in
Figure 2, which are of the same form as the original ones but additionally carry a con-
figuration vector.

Note that feature constraints can be incorporated in the flat semantics by considering
only appropriate configurations θ in Equation 2.

Unfolded Semantics. Recall that in the flat semantics, a PL-CCS program gives rise to
a set of transition systems, one for each fully configured configuration. In the unfolded
semantics, the meaning of a PL-CCS program is defined by a single labeled transition
system modeling the behavior of an entire product family. In particular, by combining
the behavior of all derivable systems within one labeled transition system, it provides
the basis for reducing effort in model checking, by considering commonalities between
systems. Before defining the unfolded semantics we introduce a suitable transition
system:

A product-line transition system (PL-LTS) with n variants operators is a tuple
(S, A, Δ, σ), where S is a (countably, possibly infinite) set of states, A is a set of com-
munication actions, and Δ is a finite set of transition relations of the form

α, ν−−→⊆ S×S,
where α ∈ A, ν ∈ {R, L, ?}n, and σ ∈ S is the start state.

Thus, in a PL-LTS a transition from one state to another is labeled by an action α and
an additional (partial) configuration vector ν. However, a transition s

α, ν−−→ s′ represents

the set of all transitions s
α, ν′

−−−→ s′ with ν more general than ν′:
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P, ν
α, ν−−→ P ′, ν

C, ν
α, ν−−→ P ′, ν

, C
def
= P (constant definition) (3)

α.P, ν
α, ν−−→ P, ν

, for arbitrary ν ∈ {R, L, ?}n (prefix) (4)

P, ν
α, ν−−→ P ′, ν

P + Q, ν
α, ν−−→ P ′, ν

(non-deterministic choice (1) ) (5)

Q, ν
α, ν−−→ Q′, ν

P + Q, ν
α, ν−−→ Q′, ν

(non-deterministic choice (2) ) (6)

P, ν
α, ν−−→ P ′, ν

(P ‖ Q), ν
α, ν−−→ (P ′ ‖ Q), ν

(parallel composition (1) ) (7)

Q, ν
α, ν−−→ Q′, ν

(P ‖ Q), ν
α, ν−−→ (P ‖ Q′), ν

(parallel composition (2) ) (8)

P, ν
α, ν−−→ P ′, ν Q, ν

ᾱ, ν−−→ Q′, ν

(P ‖ Q), ν
τ, ν−−→ (P ′ ‖ Q′), ν

(parallel composition (3) ) (9)

P, ν
α, ν−−→ P ′, ν

P [f ], ν
f(α), ν−−−−→ P ′[f ], ν

(re-labeling) (10)

P, ν
α, ν−−→ P ′, ν

(P \ L), ν
α, ν−−→ (P ′ \ L), ν

, α, ᾱ /∈ L (restriction) (11)

Fig. 2. SOS rules for unfolded semantics, except of ⊕-operator

Given two vectors ν, ν′ ∈ {R, L, ?}n, we call ν more general than ν′, denoted by
ν � ν′, if ∀i ∈ {1, . . . , n} :

(

(νi = ?) ∨ (νi = ν′i)
)

. We say that ν characterizes the
set of configuration vectors {ν′ | ν � ν′}.

Let us now elaborate on the unfolded semantics of PL-CCS programs. Similar as for
CCS, we define the labeled transition relation by means of enriched SOS rules. The
states of the transition system are pairs of PL-CCS process expressions paired with a
vector characterizing the configurations under which this state was reached. In order to
keep track of the choices for the variants operators the original SOS rules are enriched
with a vector ν characterizing the configuration vectors for every transition.

Except for the variants operator ⊕, the (original) CCS rules do not influence the
construction of the vectors attached to the transitions and are therefore only adjusted in
order to be capable of dealing with vectors. The respective rules are given in Figure 2.

For example, rules (3) and (4) express that the execution of an action—specified
either directly by action-prefixing as in (4) or indirectly by a constant definition as in
rule (3)—can be performed without affecting the current configuration ν, i.e. any state
α.P, ν affords a transition labeled with the action α in every possible configuration ν.

Essential for the unfolded semantics is the treatment of the variants operator ⊕: Re-
call that it is a binary operator which allows to model a selection between two alter-
native processes where only one will be existing in the final system. Though looking
similar to the ordinary CCS +-operator (which in a way also models a choice between
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S, 〈??〉 P3, 〈?R〉 ...

P2, 〈RL〉 ...

P1, 〈LL〉 ...

c, 〈?R〉

b, 〈RL〉a, 〈LL〉

(a) PL-LTS

a.P1, 〈LL〉 a, 〈LL〉−−−−−→ P1, 〈LL〉

a.P1 ⊕1 b.P2, 〈?L〉 a, 〈LL〉−−−−−→ P1, 〈LL〉

(a.P1 ⊕1 b.P2) ⊕2 c.P3, 〈??〉
a, 〈LL〉−−−−−→ P1, 〈LL〉

(b) deduction

Fig. 3. PL-LTS for S
def
= (a.P1 ⊕1 b.P2) ⊕2 c.P3 and the deduction of transition

a,〈LL〉−−−−→

alternatives), it has to be treated different, for two reasons: First, when a selection has
been made, the same selection has to be taken when recursively revisiting the same ⊕-
operator. Second, the choice has to be “made visibly” in the transition relation, to allow
further reasoning on each configuration by model checking.

These two issues are captured by the following two SOS rules for the ⊕-operator:

P, ν|i/L

α, ν′|
i/L−−−−−−→ P ′, ν′|i/L

P ⊕i Q, ν
α, ν′|i/L−−−−−−→ P ′, ν′|i/L

, νi �= R (configuration selection (1) ) (12)

Q, ν|i/R

α, ν′|
i/R−−−−−−→ Q′, ν′|i/R

P ⊕i Q, ν
α, ν′|i/R−−−−−−→ Q′, ν′|i/R

, νi �= L (configuration selection (2) ) (13)

Here, ν|i/x represents the updated vector ν where the entry at the ith position is
replaced by the value x ∈ {R, L}. All other entries keep their values, i.e. ∀ j �=
i : (ν|i/x)j = νj . Recall that νi yields the ith element of the vector ν. Further note
that the respective conditions of the alternative rules prevent the user from selecting a
different alternative when re-entering the selection decision due to a recursive process
present in CCS.

We define the unfolded semantics of a PL-CCS program Prog , denoted by
[[Prog ]]UF , as the PL-LTS obtained by applying the SOS rules to the main process
identifier.

As an example, Figure 3(a) shows the PL-LTS when applying the configuration se-
lection rules to the PL-CCS program starting with the main process definition S

def=
(a.P1 ⊕1 b.P2) ⊕2 c.P3. Since the presence of c.P3 in the final configuration only re-
quires to select the right variant at the variation point ⊕2, the corresponding transition
to state P3, 〈?R〉 only fixes the second entry of the configuration vector to the value R
while leaving any choice for the first entry (?). In contrast to that, the selection of either
P1 or P2 requires to take two configuration decisions, reflected by the vectors 〈LL〉
and 〈RL〉 in the respective states P1, 〈LL〉 and P2, 〈RL〉. A corresponding deduction
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A
def
= c.(a.A ⊕1 b.A), 〈?〉 A

def
= a.A ⊕1 b.A, 〈?〉

A
def
= c.(a.A ⊕1 b.A), 〈L〉

A
def
= c.(a.A ⊕1 b.A), 〈R〉

A
def
= a.A ⊕1 b.A, 〈L〉

A
def
= a.A ⊕1 b.A, 〈R〉

c, 〈?〉
a,〈L〉

c,〈L〉

a,〈L〉

b,〈R〉

c,〈R〉

a,〈R〉

Fig. 4. PL-LTS for the PL-CCS term A
def
= c.(a.A ⊕ b.A)

(applying twice Rule 12) for the selection of the variant P1 is given in Figure 3(b). Note
that the derivation shows that the semantics can require several configuration selections
for deriving a single transition.

Figure 4 shows an example for the configuration selection rules for recursive process
definitions. More specifically, the PL-LTS for the PL-CCS program A

def= c.(a.A⊕ b.A)
is shown. The state labels correspond to the process term together with the configuration
under which they were reached. If the semantics would only depend on the current
state’s CCS-term (and not additionally on the configuration selected so far), the states
at the left and the right column could not be told apart, since the process term is the same
for all three states in one column. But since the unfolded semantics keeps track of which
configuration was chosen so far, identical PL-CCS terms yield different states in the PL-
LTS under different configurations. More precisely, this means that in the state labeled
with A

def= a.A ⊕1 b.A, 〈L〉 the semantics does not allow to have an outgoing transition

labeled with
b,〈R〉−−−→, since the dual configuration 〈L〉 has already been selected.

While the unfolded semantics is easily understood and does indeed represent the
behavior of a PL-CCS program within a single transition system, the previous example
leads one to suspect that the unfolded semantics yields non-compact transition systems.
In the next section, we introduce a configured-transitions semantics, which is based on
the unfolded semantics yet yields smaller transition systems.

Let us elaborate on the correctness of the unfolded semantics in a sense made precise
below. Therefore, recall that two transition systems are called bisimilar, denoted by ≈,
when, starting at the initial states, every transition of one system can be simulated by
one of the other system and vice versa (see [Mil95] for a precise definition). From a
PL-LTS, we obtain for a given configuration vector θ a labeled transition system by
projecting to those states and transitions whose vector ν is more general, i.e. where ν �
θ, and discarding all other transitions. For a PL-CCS program with unfolded semantics
[[Prog ]]UF , let the transition system obtained in this way be denoted by Πθ([[Prog ]]UF ).

The following theorem states that (modulo bisimulation) the systems given in terms
of the flat semantics and the unfolded semantics coincide.
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A
def
= c.(a.A ⊕1 b.A) A

def
= a.A ⊕1 b.A

c, 〈?〉

a,〈L〉

b,〈R〉

Fig. 5. Configured-transitions semantics for A
def
= c.(a.A ⊕ b.A)

Theorem 1 (Correctness of unfolded semantics). Given a PL-CCS program Prog
and a configuration vector θ,

[[config(Prog , θ)]]CCS ≈ Πθ([[Prog ]]UF )

Due to space limitations we omit the proof here and refer to an extended version of the
paper [GLS08].

Configured-transitions Semantics. In the following, we give a further semantics for
a PL-CCS program which yields a smaller transition system and, at the same time,
caters for model checking the entire product line as described in the next section. The
idea is to identify states that have the same PL-CCS process term but only differ in the
corresponding configuration vector.

Let
α,ν
=⇒⊆ P × P be defined by

P
α,ν
=⇒ P ′ iff there exists ν′ with P, ν′

α, ν−−→ P ′, ν

where α ∈ A and ν, ν′ ∈ {L, R, ?}n and
α, ν−−→ is the relation defined in the previous

section.
We define the Configured-transitions semantics of a PL-CCS program Prog , denoted

by [[Prog ]]CT , as the PL-LTS consisting of states reachable from the main process iden-

tifier wrt.
α,ν
=⇒ and corresponding transition relations.

Figure 5 shows the transition system for the program A
def= c.(a.A ⊕ b.A). A com-

parison with Figure 4 showing the unfolded semantics for the same program shows that
the configured-transitions semantics yields indeed smaller transition systems.

For any PL-CCS program Prog , every path in [[Prog ]]UF corresponds to one execu-
tion of one product of the family. This does no longer hold for the paths of [[Prog ]]CT .
For example, the path cacb in the system shown in Figure 5 does not exist in any of the
transition systems of [[A def= c.(a.A ⊕ b.A)]]Flat . However, the interesting property of the
configured-transitions semantics is that for every configuration vector θ, the projection
of Πθ([[Prog ]]CT ), similarly defined as for [[Prog ]]UF , yields the same transition system
(modulo isomorphism) as the one obtained when projecting Prog wrt. θ and taking the
CCS semantics:

Theorem 2 (Correctness of configured-transitions semantics). Given a PL-CCS
program Prog and a configuration vector θ,

[[config(Prog , θ)]]CCS = Πθ([[Prog ]]CT )

A corresponding proof can be found in [GLS08].
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3 Model Checking Product Lines

In this section, we introduce a multi-valued modal version of the μ-calculus suitable for
specifying properties of individual configurations of a PL-CCS program. Furthermore,
we sketch a game-based and therefore on-the-fly model checking approach for PL-CCS
programs with respect to μ-calculus specifications.

We have chosen to develop our verification approach for specifications in the μ-
calculus as it subsumes lineartime temporal logic as well as computation-tree logic as
first shown in [EL86, Wol] and nicely summarized in [Dam94]. Therefore we can use
our approach also in combination with these logics, and in particular have support for
the language SALT [BLS06] used with our industrial partners.

Multi-valued modal μ-calculus combines Kozen’s modal μ-calculus [Koz83] and
multi-valued μ-calculus as defined by Grumberg and Shoham [SG05] in a way suit-
able for specifying and checking properties of PL-CCS programs. More specifically,
we extend the work of [SG05], which only supports unlabeled diamond and box opera-
tors, by providing also action-labeled versions of these operators, which is essential to
formulate properties of PL-CCS programs.2

A lattice is a partially ordered set (L, �) where for each x, y ∈ L, there exists (i) a
unique greatest lower bound (glb), which is called the meet of x and y, and is denoted
by x � y, and (ii) a unique least upper bound (lub), which is called the join of x and y,
and is denoted by x � y. The definitions of glb and lub extend to finite sets of elements
A ⊆ L as expected, which are then denoted by ⊔A and

⊔

A, respectively. A lattice
is called finite iff L is finite. Every finite lattice has a least element, called bottom,
denoted by ⊥, and a greatest element, called top, denoted by �. A lattice is distributive,
iff x � (y � z) = (x � y) � (x � z), and, dually, x � (y � z) = (x � y) � (x � z). In a
DeMorgan lattice, every element x has a unique dual element ¬x, such that ¬¬x = x
and x � y implies ¬x � y. A complete distributive lattice is called Boolean iff the
x � ¬x = � and x � ¬x = ⊥.

While the developments to come do not require to have a Boolean lattice, we will
apply them only to the Boolean lattices given by the powerset of possible configura-
tions. In other words, given a set of possible configurations N , the lattice considered is
(2N , ⊆) where meet, join, and dual of elements, are given by intersection, union, and
complement of sets, respectively.

Multi-valued modal μ-calculus. Let P be a set of propositional constants, and A be a
set of action names.3A multi-valued modal Kripke structure (MMKS) is a tuple T =
(S, {Rα( . , . ) | α ∈ A}, L) where S is a set of states, and Rα( . , . ) : S × S → L
for each α ∈ A is a valuation function for each pair of states and action α ∈ A.
Furthermore, L : S → LP is a function yielding for every state a function from P to L,
yielding a value for each state and proposition. For PL-CCS programs, the idea is that
Rα(s, s′) denotes the set of configurations in which there is an α-transition from state

2 Thus, strictly speaking, we define a multi-valued and multi-modal version of the μ-calculus.
However, we stick to a shorter name for simplicity.

3 So far, for PL-CCS programs, we do not need support for propositional constants. As adding
propositions only intricates the developments to come slightly, we show the more general
account in the following.
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s to s′. It is a simple matter to translate (on-the-fly) the transition system obtained via
the configured-transitions semantics into a MMKS.

A Kripke structure in the usual sense can be regarded as a MMKS with values over
the two element lattice consisting of a bottom ⊥ and a top � element, ordered in the
expected manner. Value � then means that the property holds in the considered state
while ⊥ means that it does not hold. Similarly, Rα(s, s′) = � reads as there is a
corresponding a transition while Rα(s, s′) = ⊥ means there is no α-transition.

Let V be a set of propositional variables. Formulae of the multi-valued modal
μ-calculus in positive normal form are given by

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P , α ∈ A, and Z ∈ V . Let mv -Lμ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers μ and ν are variable
binders. We will also write η for either μ or ν. Furthermore we assume that formulae
are well-named, i.e. no variable is bound more than once in any formula. Thus, every
variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ, where the set Sub(ϕ) of
subformulae of ϕ is defined in the usual way.

The semantics of a mv -Lμ formula is an element of LS—the functions from S to L,
yielding for the formula at hand and a given state the satisfaction value. In our setting,
this is the set of configurations for which the formula holds in the given state.

Then the semantics [[ϕ]]Tρ of a mv -Lμ formula ϕ with respect to a MMKS
T = (S, {Rα( . , . ) | α ∈ A}, L) and an environment ρ : V → LS , which explains the
meaning of free variables in ϕ, is an element of LS and is defined as shown in Figure 6.
We assume T to be fixed and do not mention it explicitly anymore. With ρ[Z 
→ f ]
we denote the environment that maps Z to f and agrees with ρ on all other arguments.
Later, when only closed formulae are considered, we will also drop the environment
from the semantic brackets.

The semantics is defined in a standard manner. The only operators deserving a dis-
cussion are the ♦ and �-operators. Intuitively, 〈α〉ϕ is classically supposed to hold in
states that have an α-successor satisfying ϕ. In a multi-valued version, we first consider
the value of α-transitions and reduce it (meet it) with the value of ϕ in the successor
state. As there might be different α-transitions to different successor states, we take the
best value. For PL-CCS programs, this meets exactly our intuition: A configuration in
state s satisfies a formula 〈α〉ϕ if it has an α-successor satisfying ϕ. Dually, [α]ϕ is
classically supposed to hold in states for which all α-successors satisfy ϕ. In a multi-
valued version, we first consider the value of α-transitions and increase it (join it) with
the value of ϕ in the successor state. As there might be several different α-successor
states, we take the worst value. Again, this meets our intuition for PL-CCS programs:
A configuration in state s satisfies a formula [α]ϕ if all α-successors satisfy ϕ.

The functionals λf.[[ϕ]]ρ[Z �→f ] : LS → LS are monotone wrt. � for any Z, ϕ and S.
According to [Tar55], least and greatest fixpoints of these functionals exist.

Approximants of mv -Lμ formulae are defined in the usual way: if fp(Z) = μZ.ϕ
then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z �→Zα] for any ordinal α and any environment ρ, and

Zλ := ⊔α<λ Zα for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then Z0 := λs.�,
Zα+1 := [[ϕ]]ρ[Z �→Zα ], and Zλ :=

⊔

α<λ Zα.
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[[true ]]ρ := λs.�
[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ 
 [[ψ]]ρ
[[〈α〉ϕ]]ρ := λs.

⊔

{Rα(s, s′) 
 [[ϕ]]ρ(s
′)}

[[[α]ϕ]]ρ := λs. ⊔{¬Rα(s, s′) � [[ϕ]]ρ(s
′)}

[[μZ.ϕ]]ρ := ⊔{f | [[ϕ]]ρ[Z �→f ] � f}
[[νZ.ϕ]]ρ :=

⊔

{f | f � [[ϕ]]ρ[Z �→f ]}

Fig. 6. Semantics of mv -Lμ formulae

Theorem 3 (Computation of Fixpoints, [Tar55]). For all MMKS T with state set S
there is an α ∈ Ord s.t. for all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x then Zα(s) = x.

The following theorem states that the multi-valued modal semantics of the μ-calculus
is indeed suitable for checking the different configurations of a PL-CCS program.

Theorem 4 (Correctness of Model Checking). For all PL-CCS programs Prog =
(E , P1), every configuration vector ν, and formulae ϕ ∈ mv -Lμ, we have

[[config(Prog , ν)]]CCS |= ϕ iff ν ∈ ([[Prog ]]CT |= ϕ)(P1)

The proof follows by structural induction on the formula.
While Theorem 3 also implies a way for computing the satisfaction value of an mv -

Lμ-formula and a given MMKS, this naive fixpoint computation is typically expen-
sive. Game-based approaches originating from the work by [EJS93] and [Sti95] allow
model checking in a so-called on-the-fly or local fashion. In context of multi-valued
μ-calculus, the game-based setting becomes technically more involved, as described in
detail in [SG05]. Nevertheless, the essence of the game-based approach of computing
a satisfaction value based on the so-called game graph is similar. For the multi-valued
modal μ-calculus, a slight adaption of the approach taken in [SG05] yields game-based
approach for the full multi-valued modal μ-calculus.

Due to space limitations, we skip details of the game-based model checking approach
for the multi-valued modal μ-calculus.

4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version of an industrial case study
we have been working on. We consider a product line whose configurations realize
different versions of a windscreen wiper system.

Specification. At first, we specify the family of systems, using the formalism in-
troduced in Section 2. The windscreen wiper systems that we specify in our family
WipFam are each built of two subcomponents: a rain sensor, Sensor , and a wind-
screen wiper, Wiper . Both subcomponents can be realized by two variants, a high and
a low one, respectively:
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WipFam def= Sensor ‖ Wiper (E1)

Sensor def= SensL ⊕1 SensH (E2)

Wiper def= WipL ⊕2 WipH (E3)

The low variant SensL of the sensor is specified as follows:

SensL def= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining def= non.SensL + ltl .Raining + hvy .Raining + rain .Raining (E5)

The low variant SensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-
ent conditions: hvy for heavy rain, ltl for little rain and non for no rain. However,
this sensor cannot differ between heavy and little rain, i. e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain , indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the action noRain ,
respectively.

The high version of the sensor can distinguish between different degrees of rain
intensity, i. e. SensH additionally differentiates heavy rain from little rain. Its PL-CCS
specification is given in the following:

SensH def= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium def= non.SensH + ltl .Medium + hvy .Heavy + rain .Medium (E7)

Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain .Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of
windscreen wipers, WipL and WipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict
the set of combinatorially possible configurations.

The low version WipL offers two operation modes: (i) a manual mode with perpetual
wiper arm movement (action permWip), which has to be activated explicitly by the
driver, (ii) and a semi-automatic interval mode in which the wiper arm moves at a lower
frequency triggered by the rain sensor (via the action rain).

WipL def= off .WipL + manualOn.Permanent + intvOn.Interval (E9)

Interval def= noRain.Interval + intvOff .WipL + intvOn.Interval (E10)

+ rain .Wiping + hvyRain .Wiping

Wiping def= slowWip.Interval + intvOn.Interval (E11)

Permanent def= permWip.Permanent + off .WipL + intvOn.Interval (E12)

The high variant WipH can operate at two speeds: slow (action: slowWip) and fast
(action: fastWip). Here, the wiper arm movement is fully controlled by the rain sensor
and adjusts its frequency automatically to the current rain intensity.
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WipH def= off .WipH + intvOn.AutoIntv (E13)

AutoIntv def= noRain.AutoIntv + intvOn.AutoIntv + rain .Slow (E14)

+ intvOff .WipH + hvyRain .Fast

Slow def= slowWip.AutoIntv + intvOn.AutoIntv (E15)

Fast def= fastWip.AutoIntv + intvOn.AutoIntv (E16)

The PL-CCS program specifying the entire product line WipFam is given by the
equations E1–E16. The whole program WipFam is well-formed, which allows a unique
numbering of all (two) variation points as shown by Equations E2 and E3.

Verification. From our example system family WipFam , we can derive four different
individual systems, as we can combine the subsystem variants arbitrarily. Having spec-
ified the family in PL-CCS, we can now apply the model checking approach described
in Section 3, in order to verify functional properties for configurations in the system
family.

Thinking of a relevant property, for instance, one could possibly be interested in
verifying for a windscreen wiping system whether or not a driver is always able to
switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).
Another property could demand the windscreen wiper to wipe fast, once it is raining
heavily (Property 2, formalized in Equation 15).

μX.〈.〉X ∨ 〈intvOn〉true (14)

νY.[.]Y ∧ (¬〈intvOff 〉true ∨ [hvy ]〈fastWip〉true) (15)

In our example, Property 1 holds for the set of all possible configurations 〈L, L〉,
〈R, L〉, 〈L, R〉 ,and 〈R, R〉, which can be denoted by the single vector 〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which the high variants of both
subsystems are used, i. e. the result of applying the proposed model checking algorithm
is the set containing the single configuration vector 〈R, R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,
it never provides the output action fastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of
the windscreen wiper is used, but combined with the low version of the rain sensor,
the property is still not satisfied. The sensor is not able to provide the output action
hvyRain , which would trigger the wiper to wipe fast. Using our product line specific
model checking approach, we are able to identify the configurations which do and do
not satisfy a verified property—and which we so far motivated only illustratively—in
an automatic way.

5 Conclusion

In this paper, we propose a process algebra approach to software product lines that al-
lows automatic analysis and verification by means of model checking. We introduced
PL-CCS as a variant of Milner’s CCS designed to model the overall behavior of similar
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software systems developed as a software product line. Its semantics can conveniently
be defined in terms of multi-valued modal Kripke structures. Furthermore, we intro-
duced multi-valued modal μ-calculus as a property specification language for systems
formulated in PL-CCS. Model checking then allows to verify either an entire software
product line, or, to point out which variants of the product line do not meet given cor-
rectness properties. We are currently working on algebraic properties of PL-CCS, on
the integration of a dependency model for modeling feature constraints, as well as on
an implementation of the proposed model checking approach.

Acknowledgement. We thank Mila Mejster-Cederbaum for valuable comments on an
earlier draft of this paper.
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Annotations
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Abstract. This paper proposes a semantics-based automatic null pointer
analysis for inferring non-null annotations of fields in object-oriented pro-
grams. The analysis is formulated for a minimalistic OO language and
is expressed as a constraint-based abstract interpretation of the program
which for each field of a class infers whether the field is definitely non-null
or possibly null after object initialization. The analysis is proved correct
with respect to an operational semantics of the minimalistic OO language.
This correctness proof has been machine checked using the Coq proof as-
sistant. We also prove the analysis complete with respect to the non-null
type system proposed by Fähndrich and Leino, in the sense that for every
typable program the analysis is able to prove the absence of null derefer-
ences without any hand-written annotations. Experiments with a proto-
type implementation of the analysis show that the inference is feasible for
large programs.

1 Introduction

A common source of exceptional program behaviour is the dereferencing of null
references (also called null pointers), resulting in segmentation faults in C or null
pointer exceptions in Java. Even if such exceptions are caught, the presence of
exception handlers creates an additional amount of potential branching which
in turn implies that: 1) fewer optimizations are possible and 2) verification is
more difficult (bigger certification conditions, implicit flow in information flow
verification, etc.). Furthermore, the Java virtual machine is obliged to perform
run-time checks for non-nullness of references when executing a number of its
bytecode instructions, thereby incurring a performance penalty.1 For all these
reasons, a static program analysis which can guarantee before execution of the
program that certain references will definitely be non-null is useful.

Some non-null type systems for the Java language have been proposed [6,15].
Although non-null annotations are not used by the compiler yet, this could likely
change in the future, in which case it becomes crucial to prove the soundness
of the logic underlying the type checker. Furthermore, although non-null anno-
tations are not yet mandatory, automatic type inference would help to retrofit

1 Although hardware traps are used for free whenever possible, explicit non-nullness
tests are still required as explained in [13].
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legacy code, to lower the annotation burden on the programmer, to document
the code and to verify existing code.

While some object oriented languages ensure all fields are initialized and ob-
jects are not read before being fully initialized, this is not the case in Java. More
precisely, there are three aspects that complicate non-nullness analysis: 1) fields
can be accessed during object construction (before or after their initialization)
which means all fields contain null value before their first assignment; 2) no
guarantee is given on the initialization of fields at the end of the constructor so
if a field has not been initialized it contains a null value; and 3) an object being
initialized can be stored in fields or passed as an argument of methods.

The first aspect means a naive flow-insensitive heap abstraction is not suffi-
cient as all fields are null at some stage and hence would be annotated as possibly
null. The second aspect makes a special initialization analysis necessary in order
to track fields that are certain to be initialized during the construction. Those
fields can safely be considered as non-null unless they are explicitly assigned a
null value. All other fields might not have been initialized and must be considered
as possibly null.

The third aspect was observed in [6] and concerns the problem where a virtual
method A.m() is being redefined in a sub-class B by a method referencing a field
f that is local to the class B. If the constructor of a super-class A executes
this.m() on an object of class B, it calls a method that dereferences field f
before the constructor of B has had the possibility of initializing this field. To
solve this problem, references to objects under construction need to be tracked,
e.g. by a tag indicating their state.

Related Work. Freund and Mitchell have proposed in [9] a type system combined
with a data-flow analysis to ensure the correct initialization of objects. The goal
is to formalize the initialization part of Java bytecode verification. In this respect
it is different from our analysis, which is focused on field initialization and on
their nullness property. Fähndrich and Leino in [6] have proposed another type
system also combined with a data-flow analysis to ensure a correct manipulation
of references with respect to a nullness property. This system is presented in
Sect. 6 where we compare our inference analysis to their type system and give
examples of how our analysis infers more precise types than what their system
is able to check. More recently, Fähndrich and Xia have proposed another type
system introducing delayed initialization [7]. It generalizes the previous one and
allows to prove some properties that our analysis cannot, like initialization of
circular data structures, but it has also the same loss of precision discussed in
Sect. 6.

Some works are focused on local type inference, i.e. inferring nullness property
for blocks of code from the guards. This is notably the case of FindBugs [11,10]
and of the work by Male et al. [15]. They rely on path-sensitive analysis and the
treatment of field initialization is very weak.

To infer type annotations, Houdini [8] generates a set of possible annotations
(non-null annotations among others) for a given program and uses ESC/Java [14]
to refute false assumptions. CANAPA [3] lowers the burden of annotating a
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program by propagating some non-null annotations. It also relies on ESC/Java
to infer where annotations are needed. Those two annotation assistants have a
simplified handling of objects under construction and are intented to be used
by the developer to debug and not to certify programs. Indeed, they rely on
ESC/Java [14], which is not sound (nor complete). JastAdd [5] is a tool to infer
annotations for a simplified version of Fähndrich and Leino’s type system.2

Finally, another approach to lower the amount of annotations is proposed by
Chalin and James [2]. They suggest to consider the references as non-null by de-
fault, so the developer has only to explicitly annotate nullable references. Despite
the lower amount of annotation needed, about 1/3 of declarations still need anno-
tations which can represent a substantial amount of annotations in legacy code.

Contributions. The non-null reference analysis presented here makes the follow-
ing contributions.

– The analysis is fully automatic so there is no annotation burden for the
programmer.

– The soundness of the analysis is proved formally with respect to an opera-
tional semantics. This is the first formal correctness proof for this kind of
analyses. Furthermore, this proof has been checked mechanically using the
Coq proof assistant.

– We provide a detailed comparison with Fähndrich and Leino’s type system,
which is a reference among the nullness program analyses. The completeness
with respect to their type system is proved. In this way, the correctness proof
of our analysis also provides a formal proof of correctness of the type system
of Fähndrich and Leino. We also show that our analysis can be slightly more
precise than their type system.

– The analysis is modular: a program can be analysed without analyzing the
libraries if they have already been annotated.

Outline. Section 2 presents the syntax and semantics of the simple OO language
we use to formalize our analysis. Section 3 presents the system of constraints
of the analysis and Sect. 4 gives the proof of soundness. Section 5 proves the
constraint system has a least fixpoint and discusses the modularity. Section 6
then presents Fähndrich and Leino’s type system and proves the completeness
of our analysis with respect to their type system. Section 7 gives some details on
the adaptation of the analysis to the Java bytecode level and Sect. 8 concludes.

2 Syntax and Semantics

We define a minimalistic language3 to analyze the flow of references in object-
based languages. A program is a collection of classes, arranged in a class hierarchy
2 The treatment of objects under initialization is simplified and initializations done

by methods (called from the constructor) are not taken in account.
3 The language is closed to the Java bytecode language but without any operand stack.

Removing the operand stack avoid to introduce an alias analysis which is needed at
the bytecode level, for instance, to know if a stack variable is an alias of this.
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via a transitive subclass relation ≺ (we write � for its reflexive closure). We
only consider single inheritance (where � can be embedded in a sup-semilattice
structure). The language, as described in Fig. 1 has two kinds of expressions E:
variables and references to fields. Assignments are either to variables or to fields.
New objects are created using the new instruction which takes as arguments the
name C of a class, the vector α of the types of the parameters (used to deal with
overloading) and a list of expressions. There is a conditional instruction which
may non-deterministically branches to a given program label. Finally, the in-
structions x.ms(E, . . . , E) and return represent method invocation and return,
respectively. Methods invoked are found with a lookup procedure that looks for a
method depending on its signature and the class of the current object. A method
descriptor ms and a method identifier m are both of the form {|C, mn, α → β|},
where mn is a method name, α → β is a type signature (to simplify the presen-
tation we here restrict β to void) and C is, for the method descriptor, the type
of the reference on which the method is called and, for the method identifier,
the class where the method has been defined. We use name(ms) and name(m)
to retrieve mn and class(ms) and class(m) to retrieve C. A method signature is
the couple (mn, α → β). A method signature can correspond to many methods,
a method descriptor corresponds to at most one method and a method iden-
tifier corresponds to only one method. As a notation abuse, m will be used as
the method identified instead of the identifier itself. A method is composed of
a method signature, a list of parameters and a method body consisting of a la-
belled list of instructions. A class is composed of fields and method definitions.
For a given field f class(f) gives the class in which f is defined. The set of
fields declared in a class C is written fields(C). Each program contains a special
method main used to start the execution.

The operational semantics of our minimalistic language is defined by the in-
ference rules in Fig. 1 which specify a (small-step) transition relation →m for
each method m and a (big-step) evaluation relation ⇓h,l for expressions relative
to a heap h and local variables l.

⇓h,l ⊆ E × (Val + {Ω}) →m ⊆ State × (State + Heap + {Ω})

The semantics uses an explicit error element Ω to signal the dereferencing of a
null reference. Alternatively, we could have let the semantics “get stuck” when
it encounters an error but our choice of propagating an error element to method
boundaries facilitates the correctness proof of the null pointer analysis to fol-
low. For space reasons, we only detail the error case for method invocation; all
other instructions may lead to similar error steps. The analysis keeps track of
how objects are initialized and, in order to prove its correctness, the semantics
instruments the fields of objects with flags def or undef to track the history
of field initializations. A field flagged as undef contains necessarily null. This
instrumentation is transparent in the sense that it does not affect the behavior
of a program and will be used later to prove the correctness of the analysis. In
Java bytecode, unlike fields, local variables do not have a default value and the
bytecode verifier ensures uninitialized local variables are never read. We formal-
ized this by using ⊥ as the default value for local variables and by ensuring with
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the semantics ⊥ is never read. We also model object initialization to ensure a
constructor of class C terminates only when at least one constructor of each an-
cestor has been called. To do so, we keep for each object the set of classes whose
constructor has been called. The semantics is stuck if a constructor violates
that policy. This means we only consider programs where objects are correctly
initialized.

Notation: We write F, V, Loc and N for fields, variables, memory addresses and
program points, respectively. We consider that a field includes the class name
where it has been defined. We note h(r)(f), class(h(r)) and history(h(r)) the
accesses to the first, second and third components of the heap cell h(r), respec-
tively. Function upd(h, r, f, (v,def )) sets the field f of the object at location r
to the value v and marks it as defined. The expression default(C) denotes a new
object of class C where all fields contain null values and are undef (the history
of such object is empty). The function set2DefC sets all fields (in fields(C)) of an
object to def . The function addHistoryC adds a class name C to the initializa-
tion history of an object. The star transition →∗m corresponds to the transitive
closure of →m.

A program is considered null-pointer error safe if the execution of the method
main never reaches an error state, starting from an empty heap with only one
(uninitialised) object in it and all local variable (except this) with the default
value ⊥.

Definition 1. A program P is said to be null-pointer error safe if for all loca-
tion r,

〈0, ⊥[this 	→ r], h0〉 →∗main s implies s �= Ω

where h0 is the heap of domain {r} with h0(r) = default(class(main)).

Note that since error states are propagated after method calls, this definition of
safe program implies that no dereferencing of a null reference will occur during
the execution of the program.

3 Null-Pointer Analysis

We will now present the analysis that is able to prove a program is null-pointer
error safe. As mentioned in the introduction, although the analysis annotates
local variables, method parameters and return value, its purpose is to annotate
the fields.

3.1 Abstract Domains

In this section we define an analysis that for each class of a well-typed program in-
fers annotations about nullity of its fields together with pre- and post-conditions
for its methods. The basic properties of interest are NotNull — meaning “def-
initely not-null” — and MayBeNull — meaning possibly a null reference. The
field annotations computed by the analysis are represented as a heap abstraction
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Syntax

E ::= x | E.F

I ::= x← E | x.f ← E | x← new (C, α)(E, . . . , E) | if (�) jmp | x.ms(E, . . . , E) | return

M ::= mn(x1, . . . , xn) { I; . . . ; I }
C ::= {|fields : {f ; . . . ; f}; methods : {M ; . . . ; M}|}
P ::= (C · · · C,≺)

Domains
Val = Loc + {null} Object = F ⇀ Val× {def , undef}

LocalVar = V→ Val + {⊥} Heap = Loc ⇀ Object× C× ℘(C)
State = (N× LocalVar× Heap) + Ω

Expression Evaluation

l(x) �= ⊥
x ⇓h,l l(x)

e ⇓h,l r r ∈ dom(h) f ∈ dom(h(r))

e.f ⇓h,l h(r)(f)

e ⇓h,l v v ∈ {null, Ω}
e.f ⇓h,l Ω

Operational Semantics: Normal Cases

Pm[i] = x← e

e ⇓h,l v x �= this

〈i, l, h〉 →m 〈i + 1, l[x 
→ v], h〉

Pm[i] = x.f ← e

l(x) ∈ dom(h) f ∈ dom(h(l(x))) e ⇓h,l v

〈i, l, h〉 →m 〈i + 1, l, upd(h, l(x), f, (v, def))〉

Pm[i] = x← new (C, α)(e1, . . . , en) ∀i, ei ⇓h,l vi r �∈ dom(h) x �= this

〈0,⊥[this 
→ r, {i 
→ vi}i=1..n], h[r 
→ default(C)]〉 →∗
{|C,init,α→void|} h′

〈i, l, h〉 →m 〈i + 1, l[x 
→ r], h′〉

Pm[i] = x.ms(e1, . . . , en) ∀i, ei ⇓h,l vi l(x) ∈ dom(h)

m′ = lookup(class(h(l(x))), ms) class(h(l(x))) � class(ms)
〈0,⊥[this 
→ l(x), {i 
→ vi}i=1..n], h〉 →∗

m′ h′ name(ms) = init⇒ x = this

〈i, l, h〉 →m 〈i + 1, l, h′〉

Pm[i] = if jmp

〈i, l, h〉 →m 〈jmp, l, h〉
Pm[i] = if jmp

〈i, l, h〉 →m 〈i + 1, l, h〉

Pm[i] = return C = class(m)

name(m) = init⇒ ∀A, C ≺ A⇒ A ∈ history(l(this))
name(m) = init⇒ h′ = h[l(this) 
→ addHistoryC(set2DefC(h(l(this))))]

name(m) �= init⇒ h′ = h

〈i, l, h〉 →m h′

Operational Semantics: Error Cases (Selected Rules)

Pm[i] = x.ms(e1, . . . , en) ∀i, ei ⇓h,l vi l(x) ∈ dom(h)

m′ = lookup(class(h(l(x))), ms) class(h(l(x))) � class(ms)
〈0,⊥[this 
→ l(x), {i 
→ vi}i=1..n], h〉 →∗

m′ Ω name(m) = init⇒ x = this

〈i, l, h〉 →m Ω

Pm[i] = x.ms(e1, . . . , en) l(x) = null ∨ ∃i, ei ⇓h,l Ω

〈i, l, h〉 →m Ω

Fig. 1. Syntax and semantics of the language
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H� ∈ Heap� which provides an abstraction for all fields of all initialized objects
and all initialized fields of objects being initialized.4

As explained in the Introduction, object initialization requires a special treat-
ment because all fields are null when the object is created so this would lead a
simple-minded analysis to annotate all fields as MayBeNull. However, we want
to infer non-null annotations for all fields which are initialized explicitly to be so
in a constructor. In other words, fields that are not initialized in a constructor
are annotated as MayBeNull and all other fields have a type compatible with
the value they have been initialized with.

To this end, the analysis tracks field initializations of the current object in con-
structors (and methods called from constructors). This is done via an abstraction
of the this reference by a domain TVal� which maps each of the fields declared in
the current class to Def or UnDef. To allow strong updates, we need a flow-sensitive
abstraction so to each program point we map a such abstraction (T �).

Abstract Domains

Val� = {Raw(Y ) | Y ∈ Class} ∪ {Raw−, NotNull, MayBeNull}

Def� = {Def, UnDef} TVal� = F ⇀ Def� Heap� = F→ Val� LocalVar� = V→ Val�

Method� = M→ {|this ∈ TVal�; args ∈ (Val�)∗; post ∈ TVal�|}

State� = Method� × Heap� ×
(

M× N ⇀ TVal�
)

×
(

M× N ⇀ LocalVar�
)

Selected Partial Orders

Val� Def�

x ∈ Val�

NotNull � x Raw(X) � Raw−

X � Y

Raw(X) � Raw(Y )
x ∈ Val�

x � MayBeNull
Def � UnDef

Fig. 2. Abstract domains and selected partial orders

References are then abstracted by a domain Val� which incorporate the “raw”
references from [6]. A Raw− value denotes a non-null reference of an object being
initialized, which does not yet respect his invariant (e.g. Raw− can be used as
a property of this when it occurs in constructors). If a reference is known to
have all its fields declared in class X and in the parents of X initialized, then the
reference is Raw(X). The inclusion of “raw” references allows the manipulation
of objects during initialization because the analysis can use the fact that for
an object of type Raw(X), only fields declared in X and above have a valid
annotation in the abstract heap H�. A NotNull value denotes a non-null reference
that has finished its initialization.

4 We consider fields initialized when they have been assigned a value, whereas we
consider an object initialized when it has returned from its constructor.
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Figure 2 defines formally each abstract domain. The flow of references through
local variables is analysed with a flow-sensitive abstraction of each variable
(L� ∈ LocalVar�). The analysis also infers method annotations M � ∈ Method�.
For any method m, M �(m)[this] is an approximation of the initialization state
of this before the execution of m, while M �(m)[post] gives the corresponding
approximation at the end of the execution. M �(m)[args] approximates the pa-
rameters of the method, taking into account all the context in which m may
actually be invoked. We only give the definition of the partial order for Val�

and Def�. The other orders are defined in a standard way using the canonical
orders on partial functions, products and lists. The final domain State� is hence
equipped with a straightforward lattice structure.

3.2 Inference Rules

The analysis is specified via a set of inference rules, shown in Fig. 3, which define
a judgment

M �, H�, T �, L� |= (m, i) : instr

for when the abstract state (M �, H�, T �, L�) is coherent with instruction instr
at program point (m, i). For each such program point, this produces a set of
constraints over the abstract domain State�, whose solutions constitute the cor-
rect analysis results. The rules make use of an abstract evaluation function for
expressions (explained below) that we write [[e]]�. An example of a program with
the corresponding constraints are given in Sect. 3.3.

Assignment to a local variable (rule (1)) simply assigns the abstract value
associated with the expression to the local variable in the abstract environment
L�. Assignment to a field (2) can either be to a field of the current object, in
which case the field becomes “defined”, or to another object. In both cases, the
abstract heap H� is augmented with the value of the expression as a possible
value for the field. When a return value is encountered (3) in a constructor, all
still-undefined fields are explicitly set to MayBeNull. For a new instruction (4), a
new abstraction 
C is built for the pre-condition on this of the constructor. The
first argument (this) is set to Raw−. The result of the constructor is known to
be NotNull (the object is fully initialized). The method call (6) uses conditional
constraints to distinguish a number of cases, depending on whether the call is to
a method in the current class and the receiving object is the current object this
or not. We use Raw(super(C)) to denote the Raw type just above Raw(C).5

The whole constraint system of a program P is then formally defined by the
judgement M �, H�, T �, L� |= P . We write overrides(m′, m) when the method
m′ overrides m. In such case we require a contravariant property between the
parameters of m and m′. Any overriding overrides(m′, m) need also to invalidate
(in term of precision) M �(m)[post] because a virtual call to m could lead to the
execution of m′ which is not able (by definition of T �) to track the initialization
of fields declared in class(m). A similar constraint is required for M �(m′)[this]
because for a virtual call to m we have only constrained M �(m)[this] and not
5 If C is the root of the class hierarchy (Object in Java), then Raw(super(C)) = Raw−.
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Inference Rules

T �(m, i) � T �(m, i + 1) L�(m, i)[x 
→ [[e]]�] � L�(m, i + 1)

M�, H�, T �, L� |= (m, i) : x← e
(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if x = this ∧ f ∈ fields(class(m)) then T �(m, i)[f 
→ Def] else T �(m, i) � T �(m, i + 1)

L�(m, i) � L�(m, i + 1) [[e]]� � H�(f)

M�, H�, T �, L� |= (m, i) : x.f ← e

(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T �(m, i) � M�(m)[post]

name(m) = init⇒ ∀f ∈ fields(class(m)).(T �(m, i)(f) = UnDef⇒ MayBeNull � H�(f))

M�, H�, T �, L� |= (m, i) : return

(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m′ = {|C, init, α→ void|}

�C � M�(m′)[this] Raw− :: [[e1]]� :: · · · :: [[ej ]]� �M�(m′)[args]
L�(m, i)[x 
→ NotNull] � L�(m, i + 1) T �(m, i) � T �(m, i + 1)

M�, H�, T �, L� |= (m, i) : x← new (C, α)(e1, . . . , ej)

(4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L�(m, i) � L�(m, i + 1) L�(m, i) � L�(m, jmp)
T �(m, i) � T �(m, i + 1) T �(m, i) � T �(m, jmp)

M�, H�, T �, L� |= (m, i) : if jmp

(5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m′ = lookup(class(ms), ms) C′ = class(m′) C = class(m)

⎛

⎜

⎜

⎝

if x = this ∧ C = C′ ∧ [[x]]� � Raw(super(C′)) ∧M�(m′)[post] � T �(m, i) � ⊥C′
then L�(m, i)[x 
→ Raw(C′) � [[x]]�] � L�(m, i + 1)
else if name(m′) = init then L�(m, i)[x 
→ Raw(C′)] � L�(m, i + 1)
else L�(m, i) � L�(m, i + 1)

⎞

⎟

⎟

⎠

(

if x = this ∧ C = C′ then M�(m′)[post] � T �(m, i) � T �(m, i + 1)
else T �(m, i) � T �(m, i + 1)

)

(

if x = this ∧ C = C′ then T �(m, i) � M�(m′)[this]
else ρ(C′, [[x]]�) � M�(m′)[this]

)

[[x]]� :: [[e1]]� :: · · · :: [[ej ]]� �M�(m′)[args]

M�, H�, T �, L� |= (m, i) : x.ms(e1, . . . , ej)

(6)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀m, m′, overrides(m′, m)⇒M�(m)[args] � M�(m′)[args]
∀m, m′, overrides(m′, m)⇒ �class(m) � M�(m)[post]
∀m, m′, overrides(m′, m)⇒ �class(m′) � M�(m′)[this]

∀m, M�(m)[this] � T �(m, 0) ∀m, M�(m)[args] � L�(m, 0)
�class(main) � T �(main, 0) Raw− � L�(main, 0)(this)

∀m, ∀i, M�, H�, T �, L� |= (m, i) : Pm[i]

M�, H�, T �, L� |= P

(7)

Auxiliary Operators

ρ(C, NotNull) = ⊥C

ρ(C, Raw(X)) = if X � C then ⊥C else �C

ρ(C, MayBeNull) = ρ(C, Raw−) = �C

[[x]]�
C,H�,t�,l� =

{

Raw(C) if x = this ∧ t� = ⊥c ∧ l�(x) = Raw(super(C))
L�(x) otherwise

[[e.f ]]�
C,H�,t�,l� =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

H�(f) if [[e]]�
C,H�,t�,l� = NotNull

or (e = this ∧ t�(f) = Def ∧ class(f) = C)
or [[e]]�

C,H�,t�,l� = Raw(X) with X � class(f)
MayBeNull otherwise

Fig. 3. Analysis specification
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M �(m′)[this]. The constraints on T �(main, 0) and L�(main, 0)(this) ensure a
correct initialisation of the main method.

Finally an abstract state is said safe (noted safe�
P (M �, H�, T �, L�)) when for

each program point (m, i), if Pm[i] is of the form x.f ← e or x.ms(. . .) then
L�(m, i)(x) �= MayBeNull, and for all expressions e which appear in the instruc-
tion Pm[i], any dereferenced sub-expression e′ has an abstract evaluation strictly
lower than MayBeNull.

The analysis uses a function ρ to transfer information from domain Val� to
domain TVal�: ρ transforms an abstract reference Val� to a TVal� abstraction
of a current object this in the class C. The notations ⊥C , respectively 
C ,
correspond to the function that maps all fields defined in C to Def, respectively
UnDef. The analysis also relies on an abstract evaluation [[e]]�C,H�,t�,l� of expres-
sions parameterised by the current class C, an abstract heap H�, an abstraction
t� of the fields (declared in class C) of the this object and an abstraction l� of the
local variables. The first equation states that the type of a local variable is ob-
tained from the L� function and can be refined from Raw(super(C)) to Raw(C)
if this is sufficiently initialized. The second equation states that the type of a
field is obtained from the heap abstraction if the type of the reference is NotNull
or if it is a reference to an object sufficiently deeply initialized. Otherwise, it is
MayBeNull. In the inference rules we write [[e]]� for [[e]]�class(m),H�,T �(m,i),L�(m,i)

3.3 Example

The Java source code of our example is provided in Fig. 4, while Fig. 5 shows
the code in the syntax defined in Sect. 2 and the constraints obtained from the
rules defined in Sect. 3.2. This example is fairly simple and, for conciseness, the
code of the main method has been omitted, but the generated constraints should
be sufficient to give an idea of how the inference works.

The labels in the source starting with the character @ are the annotations in-
ferred by the analysis for the fields and the methods signatures. An annotation in

class A {
private Object f ;
private Object g ;

A( Object o ){ f = o ;}

void m(){ g=f ;}

public static void main ( S t r ing args [ ] ) {
Object o = new Object ( ) ;
A a = new A(o ) ;
a .m( ) ;
}

}

Fig. 4. Java source
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1: class A {
2: Object @NotNull f;
3: Object @MayBeNull g;
4:
5: @RawTop void init(Object @NotNull o){
6: M �(A.init)[args] � L�(A.init, 0)
7: M �(A.init)[this] � T �(A.init, 0)
8: 0: this.{|Object,init,[] -> void|}()
9: ρ(Object, [[this]]) � M �(Object.init)[this]
10: [] � M �(Object.init)[args]
11: L�(A.init, 0)[this �→ Raw(Object)] � L�(A.init, 1)
12: T �(A.init, 0) � T �(A.init, 1)
13: 1: this.f = o
14: [[o]] � H�(A.f)
15: T �(A.init, 1)[A.f �→ Def] � T �(A.init, 2)
16: L�(A.init, 1) � L�(A.init, 2)
17: 2: return
18: if T �(A.init, 2)(A.f) = UnDef then MayBeNull � H�(A.f)
19: if T �(A.init, 2)(A.g) = UnDef then MayBeNull � H�(A.g)
20: T �(A.init, 2) � M �(A.init)[post]
21: }
22:
23: @NotNull void m(){
24: M �(A.m)[args] � L�(A.m, 0)
25: M �(A.m)[this] � T �(A.m, 0)
26: 0: this.g = this.f
27: [[this.f]] � H�(A.g)
28: T �(A.m, 0)[A.g �→ Def] � T �(A.m, 1)
29: L�(A.m, 0) � L�(A.m, 1)
30: 1: return
31: T �(A.m, 1) � M �(A.m)[post]

}

}

Fig. 5. Code with constraints

front of a method corresponds to the property of this before the invocations of the
method. The other annotations are placed just before the variable they refer to.

Lines 6, 7, 24 and 25 list the constraints obtained from rule (7) in Fig. 3.
They “initialize” the flow-sensitive abstractions L�(m, 0) and T �(m, 0) with the
information of the method signatures. All other constraints are directly deduced
from the rule corresponding to the instruction where conditional constraints have
been simplified where it was possible. Lines 9 to 12 list the constraints obtained
from rule (6) when name(m′) = init and class(m) �= class(m′). Lines 14 to 16
correspond to a field assignment on this of a field defined in the current class.
Lines 18 to 20 correspond to a return instruction of a constructor, which adds
the value MayBeNull in the abstract heap for all (maybe) undefined fields, while
line 31 corresponds to a return instruction of a non-constructor method.
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The methods are called from the main method of Fig. 4. The method init
is annotated with Raw− (@RawTop) as it is called on a completely uninitialized
value. The constraint line 11 then refine Raw− to Raw(Object) so if a field of
Object were accessed in the rest of the method, the abstraction of the heap
would be used. The NotNull (@NotNull) annotation before the argument of the
method init is first transferred to a local variable at line 6 and then moved
from o to H�(A.f) at line 14. At the same time, line 15 records that the field f
is defined. Then, line 18, as f has been defined H�(A.f) is not modified whereas,
line 19, T �(A.init, 2)(A.g) = UnDef so H�(A.g) is constrained to MayBeNull.

4 Correctness

In this section we prove the correctness of the analysis. We first define (see Fig. 6)
the logical link between concrete and abstract domains via a correctness relation.
Then we prove (Theorem 1) that any solution of the constraint system which
verifies the predicate safe�

p enforces the null-pointer error safety property for the
set of preconditions inferred by the analysis. The result mainly relies on a suitable
subject reduction lemma (Lemma 1). The theorem has been mechanically proved
with the Coq proof assistant6.

v ∈ Val
Def ∼ (v, def )

v ∈ Val d ∈ {def , undef}
UnDef ∼ (v, d)

v ∈ dom(h) ∀f ∈ dom(h(v)), IsDef(h(v)(f))
NotNull ∼h v

v ∈ Val
MayBeNull ∼h v

v ∈ dom(h) ∀f ∈ ⋃

A�C fields(C) ∩ dom(h(v)), IsDef(h(v)(f))

Raw(A) ∼h v

v �= null

Raw− ∼h v

∀x, l(x) = ⊥ ∨ L�(x) ∼h l(x)

L� ∼h l

r ∈ dom(h) fields(C) ⊆ dom(T �) ∩ dom(h(r))
∀f ∈ fields(C), T �(f) ∼ h(r)(f)

T � ∼h,C r
∀r ∈ dom(h), ∀f ∈ dom(h(r)), h(r)(f) = (v, d)⇒ d = undef ∨H�(f) ∼h v

H� ∼ h
o = l(this) L�(m, i) ∼h l T �(m, i) ∼h,class(m) l(this) H� ∼ h

(M�, H�, T �, L�) ∼m,o 〈i, l, h〉
M�(m)[post] ∼h,class(m) o H� ∼ h

(M�, H�, T �, L�) ∼m,o h (M�, H�, T �, L�) ∼m,o Ω

Fig. 6. Correctness relations

An abstract element (M �, H�) induces a set of method preconditions defined
by

Pre(M �, H�)(m) =
{

(l, h)
∣

∣

∣

∣

H� ∼ h, M �(m)[this] ∼class(m),h l(this),
V �

0 ∼h l(this) and ∀i = 1..n, V �
i ∼h l(i)

}

with M �(m)[args] = V �
0 :: · · · :: V �

n

6 The proof is available at http://www.irisa.fr/lande/pichardie/np/

http://www.irisa.fr/lande/pichardie/np/
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Note that a method m which is not called by any other method in the program,
will be associated with a non-null assumption on all its parameters. This corre-
sponds to the non-null by default approach advocated by Chalin and James [2].

We write →(n)
m (resp →(n)∗

m ) for the operational step relation (resp. transitive
closure) where exactly n method calls are performed during step (resp. transitive
closure), including sub-calls.

Lemma 1 (Subject reduction). Let (M �, H�, T �, L�) ∈ State� such that
M �, H�, T �, L� |= P and safe�

P (M �, H�, T �, L�). Let n be an integer such that for
all k, k < n, and all methods m, local variables l, heap h and configuration X if
(l, h) ∈ Pre(M �, H�)(m) and 〈0, l, h〉 →(k)∗

m X then (M �, H�, T �, L�) ∼m,l(this) X
and X �= Ω.

Let p be an integer, i a program counter, l local variables, h a heap and X a
configuration such that 〈i, l, h〉 →(p)

m X, (M �, H�, T �, L�) ∼m,o 〈i, l, h〉 and p ≤ n
then (M �, H�, T �, L�) ∼m,o X and X �= Ω.

Proof. See Appendix C in [12]

Theorem 1 (constraint system soundness). If there exists (M �, H�, T �, L�)
such that M �, H�, T �, L� |= P and safe�

P (M �, H�, T �, L�) holds then P is null-
pointer error safe.

Proof. The proof proceeds by induction on the maximum number of method calls
in the execution sequences and then another induction on the length of intra-
method derivation, in order to be able to conclude with the subject reduction
Lemma 1.

5 Inference

Expressing the analysis in terms of constraints over lattices has the immediate
advantage that inference can be obtained from standard iterative constraint solv-
ing techniques for static analyses. Proposition 1 asserts that there is a decision
procedure to detect programs which are verifiable with the analysis.

Proposition 1. For all program P there exists an algorithm which decides if
there exists (M �, H�, T �, L�) ∈ State� such that M �, H�, T �, L� |= P and safe�

P

(M �, H�, T �, L�).

Proof. It is a standard proof since the system of constraint is composed of mono-
tone functions on a finite lattice. The least solution can then be computed and
be checked with respect to predicate safe�

P .

Furthermore, the present analysis is modular in the sense that, rather than per-
forming an analysis of all classes of a program, it is possible to describe certain
classes (e.g., classes coming from a library) by providing interfaces consisting
of some method signatures M �(m), m ∈ Mfix and field invariants H�(f), f ∈ F fix
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relative to the classes.7 The validity of these signatures can be established once
and for all by the modular type checker proposed by Fähndrich and Leino (which
works class by class). The analysis of partial programs would then proceed in
several stages. First, the constraint system is generated only for the available
classes. The system may refer to the variables M �(m), m ∈ Mfix and H�(f),
f ∈ F fix. Then the partial system is solved starting the iteration à la Kleene
from

(M �
0 , H

�
0, T

�
0 , L�

0) = (⊥ � {m 	→ M �(m)}m∈M fix , ⊥ � {f 	→ H�(f)}f∈F fix , ⊥, ⊥)

If one of the variables M �(m), m ∈ Mfix or H�(f), f ∈ F fix has to be updated
during the iteration, the constraint resolution fails, since this means there does
not exist a solution compatible with the proposed signatures.

Theorem 2 (Relative completeness of the modular solver). If the previ-
ous algorithm halts then the partial constraint system has no solution compatible
with the signatures provided for the unknown classes.

Proof. Let S denote the set

{(M �, H�, T �, L�) | M �, H�, T �, L� |= P ∧ (M �
0, H

�
0, T

�
0 , L�

0) � (M �, H�, T �, L�)} .

Suppose the previous algorithm halts. Since the iteration is ascending it means
the least solution of S is necessarily strictly greater than (M �

0 , H
�
0, T

�
0 , L�

0). Since
any solution compatible with the signatures M �(m), m ∈ Mfix or H�(f), f ∈ F fix

is in S, we can conclude that such a solution does not exist.

6 Fähndrich and Leino’s Type System

In this section we compare our analysis with the type system proposed by
Fähndrich and Leino [6]. This comparison relies on a formal definition8 of their
notion of typable program. For conciseness, the full type system is not included
here but can be found in [12].

A typing judgment for expression e is of the form Γ, L � e : τ with Γ a type
annotation for fields and methods, L a type annotation for local variables and
τ a type in Val�. Each instruction instr is also associated to a type judgement
Γ, m � instr : L → L′ where m is the current method, L the current annotation
for local variables and L′ a valid annotation after the execution of instr. [inits F ]
is a method annotation that indicates the method initializes the fields in the set
F . A program is said well-typed w.r.t. Γ if there are no overridden methods
annotated as [inits F ], arguments are contravariant and there exists L such
that for all methods m and for all program points i, either Pm[i] = return

7 Modular inference is less precise: to keep the same precision the analysis would need
richer annotations for the libraries.

8 Note that in their paper the authors only propose an informal definition so what we
formalise here is only our interpretation of their work.
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or for all successors points j of i, their exists L′ such that L′ � L(m, j) and
Γ, m � Pm[i] : L(m, i) → L′.

Figure 7 shows, as an example, the judgment for field assignments. It checks
two properties: 1) the type Γ [f ] of the field f subsumes the type τ of the ex-
pression e and 2) the type of the reference x is not MayBeNull.

Γ, L � e : τ τ � Γ [f ] L(x) �= MayBeNull

Γ, m � x.f ← e : L → L

Fig. 7. Typing judgment for field assignments

This type system is coupled with a data flow analysis to ensure that all fields
not declared as MayBeNull in class C are sure to be defined at the end of all
constructors of C. It is a standard data flow analysis, the full description can
be found in [12]. F(m, i) represents the fields that are not initialized at program
point (m, i). At the beginning of every constructor m, it is constrained to the set
of fields defined in the class of m. For field assignation on this, the field is not
propagated to the next node. For method calls to methods tagged as [inits F ],
fields in F are not propagated to the next node, but the set of undefined fields
is propagated to the first instruction of the callee. It is then checked that those
tagged methods initialize their fields.

Figure 8 shows an extract of the data flow analysis. It distinguishes two cases
depending on whether the field assignation is on this, in which case the field
assigned is removed from the set of undefined fields, or on another object, in
which case the set of undefined fields is propagated.

F(m, i) \ {f} ⊆ F(m, i + 1)

Γ, F |= (m, i) : this.f ← e

x �= this F(m, i) ⊆ F(m, i + 1)

Γ, F |= (m, i) : x.f ← e

Fig. 8. Data flow rule for field assignments

Theorem 3. If P is FL-typable then there exists (M �, H�, T �, L�) such that
M �, H�, T �, L� |= P and safe�

P (M �, H�, T �, L�) holds.

Proof. We show that if P is FL-typable for a given Γ and L then this type
annotations represent a valid solution of the constraint system which furthermore
satisfies the safe�

P property.

Corollary 1 (FL type system soundness). If there exists Γ such that P is
FL-typable then P is null-pointer error safe w.r.t. the preconditions given by Γ .

Proof. Direct consequence of Theorem 3 and Theorem 1.

Theorem 4. There exists P such that P is not FL-typable and there exists
(M �, H�, T �, L�) such that M �, H�, T �, L� |= P and safe�

P (M �, H�, T �, L�) holds.
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Proof. As shown in Fig. 3, the analysis of expressions is parametrized on the
abstraction of this in order to know if a field has already been defined or not.
In Fähndrich and Leino’s analysis, the type checking is separated from the data-
flow analysis that knows which fields have already been defined. For example,
in

class C {
Object f; //NotNull
Object g; //MayBeNull or NotNull?
public C(){ this.f = new Object(); this.g = this.f;}

}
our analysis benefits from the abstraction of this and knows this.f has been
initialized before it is assigned to this.g. In Fähndrich and Leino’s analysis,
an intermediate local variable set to the new object and affected to f and g
or an explicit cast operator which checks the initialization at run-time would
be needed in order to type the program. Our abstraction of this can also be
passed from a method to another, here also keeping some more information as
the intra-procedural data-flow of Fähndrich and Leino. In the Soot suite we
have analyzed [16] (see the next section), 5% of the constructors use fields that
have been just defined.

7 Towards a Null-Pointer Analyzer for Java Bytecode

A prototype of the analysis has been implemented. The analysis works at the
Java bytecode (JVML) level but annotations on fields and method can be prop-
agated at the source level with a minor effort.

Working in the fragment of JVML without exceptions does not modify the
analysis but some points need to be taken in account. JVML is a stack lan-
guage, we therefore need to track aliases of this on the stack to know when
a field manipulation or a method call is actually done on this. Operations on
numbers do not add any difficulty as JVML is typed and numbers are guar-
antied not to be assigned to references. The multi-threading cannot interfere
with weak updates, but it could interfere with the strong updates used on the
abstraction of this. However, as the initialization evolves monotonically (i.e.
a field once defined cannot be reverted to undefined) it is still correct. Static
methods do not have an abstraction of this and do not add any other difficulty
to handle.

Static fields are difficult to analyse precisely as they are initialized through
<clinit> methods. Exceptions in Java can be Raw object, i.e. it is possible in
a constructor to throw this as an exception. We could imagine a solution where
abstract method signatures would include the type of the exceptions a method
can throw. Tracking initialization of array cells precisely is also challenging as
checking that all cells have been initialized requires numerical abstraction. We
currently and conservatively annotate static fields and array cells as MayBe-
Null and references to caught exception objects as Raw− and left their precise
handling for future work.
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Other small optimizations (that have not been formalized) are possible. For
example, the abstraction of this could be done for all other references of type
Raw(X) (or Raw−). It would give a more precise information on fields in general.

The first performance tests are promising as large programs such as Javacc
4.0 and Soot 2.2.4 can be analysed on a laptop in about 40 seconds and 5 min-
utes respectively. The analysis still needs to be completed with a path-sensitive
analysis [4] to recover non-nullness information from the conditionals.

8 Conclusions and Future Work

We have defined a semantics-based analysis and inference technique for auto-
matically inferring non-null annotations for fields. The analysis has been proved
correct and the correctness proof has been machine-checked in the proof assis-
tant Coq. This extends and complements the seminal paper of Fähndrich and
Leino in which is proposed an extended type system for verifying non-null type
annotations. Fähndrich and Leino’s approach mixes type system and data-flow
analysis. In our work, we follow an abstract interpretation methodology to gain
strong semantic foundations and a goal-directed inference mechanism to find a
minimal (i.e. principal) non-null annotation. By the same token we also gained
in precision thanks to a better communication between abstract domains. We
then proved the correctness of our analysis and its completeness with respect to
their type system.

Variations of the present analysis can be envisaged. For example, in our anal-
ysis, preconditions for methods are computed as the least upper bounds of the
conditions verified at call points. Another approach would be to infer the weak-
est preconditions that prevents null-pointer exceptions.

In the future, we also plan to extend our analysis and its correctness proof to
the full Java bytecode language. To manage this substantial extension it is im-
portant to be able to machine-check the correctness proof, which will necessarily
be large. Our previous experience with developing a certified static analyser for
Java [1] using the Coq proof assistant leads us to believe that such a formalisation
is indeed feasible.
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Abstract. The local minimum spanning tree (LMST) topology control
protocol tries to maintain connectivity in an ad-hoc wireless sensor net-
work while minimizing power consumption and maximizing data band-
width. Our formal, statistical model checking analysis of LMST under
realistic deployment conditions shows that the invariant of maintaining
network connectivity is easily lost. We then propose a formally-based
system redesign methodology in which quantitative temporal logic for-
mulas and further statistical model checking can be used to identify the
causes of bugs, and to reach a correct system redesign. We show this
methodology effective in the redesign of a version of LMST that ensures
network connectivity under realistic deployment conditions.

1 Introduction

The design of wireless sensor network protocols presents many challenges. On the
one hand, it is infeasible to comprehensively evaluate an ad-hoc wireless sensor
network protocol based solely on deployment in the field. On the other, faithfully
modeling such a protocol is far from trivial, because this requires a precise model
of communication in which physical distance, location, power, and time must
all be taken into account. Simulation is a widely used analysis method; but it
falls short of formal analysis in its capacity to verify in a more conclusive way
desired requirements. Formal modeling and analysis itself is nontrivial, because
of the need for faithfully capturing the communication model, real time, and
the often probabilistic algorithms (e.g. 802.11 MAC contention), or probabilistic
phenomena (e.g. quartz clock drift).

The best way of using such formal modeling and analysis is not a posteriori,
after a wireless protocol has been designed, but as a powerful method to design
and redesign several times such a protocol, using the insights gained from the
formal analysis to meet the desired requirements in a final design. In this work
we do exactly this for the local minimum spanning tree (LMST) topology con-
trol protocol [18]. Only a high-level design of such a protocol under idealized
circumstances existed prior to our work. At that idealized level, the key prop-
erty that the protocol always maintains network connectivity had been shown
by mathematical analysis in [18]. The nontrivial challenge has been to refine
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this high-level, idealized design into an implementable protocol version that can
deal in practice with unavoidable issues such as clock drift, MAC contention,
and transmission delay. The challenge has been nontrivial because our formal
analysis has shown that the key invariant of maintaining network connectivity
fails rather badly when these additional conditions are accounted for.

Our starting point has been the work of Ölveczky and Thorvaldsen [23,24].
They show how to formally model and analyze the OGDC wireless sensor net-
work protocol using Real-Time Maude [22], an extension of the rewriting logic
language Maude [5] for real-time and hybrid systems. Real time is of the essence
for wireless sensor network protocols such as OGDC and LMST; and we have
adopted their elegant way of faithfully modeling all relevant aspects of a wireless
communication model, such as its broadcast nature, plus its sensitivity to loca-
tion, distance, and transmission range; and of specifying message sending and
receiving events by rewrite rules, proposed in [23,24]. We begin by specifying in
this way the idealized LMST protocol as a real-time rewrite theory and analyz-
ing it in Real-Time Maude, thus confirming by model checking the connectivity
maintenance property established analytically in [18]. This serves as our base
specification and provides key infrastructure on which to tackle the important
challenge of arriving at a realistic (re-)design of the LMST protocol.

As soon as we introduce into the protocol model more realistic implementation
details and environmental pressures, two important things happen. First, since
various probabilistic phenomena naturally appear at this more realistic level, our
formal specifications of the various refinements of the original model now become
real-time probabilistic rewrite theories [13]. Probabilistic rewrite theories can be
not only simulated in Maude using standard sampling techniques [3], they can
also be formally analyzed by statistical model checking using the VeStA tool
[26]. Second, our analysis shows that the idealized design fails quite badly to
maintain network connectivity when such realistic issues are made explicit in
the model; and therefore LMST requires a nontrivial redesign.

This work makes two main contributions. The first is to show, using a concrete
state-of-the-art wireless sensor protocol like LMST, how the very successful Real-
Time Maude approach to modeling and analysis of wireless sensor protocols ini-
tiated in [23,24] can be seamlessly extended to the probabilistic setting, both at
the level of specifications (passing from real-time rewrite theories to probabilistic
real-time rewrite theories), and at the level of formal analysis (passing from LTL
model checking in Real-Time Maude to statistical model checking in VeStA). We
believe that this extension is quite useful because: (i) wireless sensor networks
must operate in a probabilistic environment and often include probabilistic al-
gorithms in some protocol components (e.g. 802.11 MAC contention); and (ii)
performance issues are of the essence, and it is therefore very useful to general-
ize the absolute Boolean-valued guarantees of LTL requirements to probabilistic
real-valued guarantees associated to probabilistic temporal logic requirements in
a logic like QuaTEx [3]. In QuaTEx, the evaluation of a temporal logic formula
yields a real number (not necessarily between 0 and 1) corresponding to some
quantitative measurement of the system.
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Our second contribution, also illustrated in the context of LMST for the sake
of concreteness, but of general applicability, is to show how this style of prob-
abilistic real-time formal specification and analysis can be the basis of a very
useful design and redesign methodology. In our methodology, probabilistic real-
time formal specifications and quantitative statistical model checking analysis
are used throughout the design process to support three mutually-reinforcing
tasks: (i) to uncover flaws in a given design; (ii) to conjecture the causes of the
various malfunctions and to confirm such conjectures by means of statistical
correlations between further analyses; and (iii) to then use the confirmed conjec-
tures of the hypothesized causes of flaws to redesign the protocol several times
and ultimately to verify by statistical model checking that the final design sat-
isfies the desired requirements. In addition to LMST, the methodology is widely
applicable for other wireless protocols and to other probabilistic systems, such
as DoS protection protocols [2] and stochastic hybrid systems [20]. Our appli-
cation of the methodology in this paper results in a new, implementable design
of the LMST protocol that satisfies desired requirements in the face of realistic
operating conditions.

2 The Idealized Local Minimum Spanning Tree Protocol

We begin by briefly reviewing the idealized version of the local minimum span-
ning tree (LMST) topology control protocol presented in [18]. The function of a
topology control protocol is to define which nodes in an ad-hoc wireless sensor
network communicate with each other, and with what transmission power they
communicate. The goal is to minimize power consumption, prolong network life-
time, and maximize data bandwidth while maintaining network connectivity. In
the case of the LMST protocol, a distributed algorithm is employed whereby
each sensor node periodically updates its own local topology. The local topology
of a node is the set of neighbors to which it routes data.

In the protocol, each wireless node is presumed to have internal quartz clock
timers, a memory for buffering messages, and a wireless transmitter which is
adjustable to different power levels. The periodic, real-time nature of the pro-
tocol is governed by a global constant called the round time, denoted rd, and is
approximately 10s. Each node constantly employs one of its timers to count the
time between round boundaries, at which point the node may adjust its local
topology by changing its wireless transmission strength. We refer to this timer
as the round timer. There are therefore two notions of a round, one global and
one local. A global round is any interval [t, t + rd] where t is a multiple of rd. A
local round is determined with respect to a particular node, and is defined as
any interval between successive round timer expirations. The protocol is then
defined by what happens when the local round timer of a node expires:

1. The node first broadcasts a message, called a hello message, at maximum
transmission strength. The hello message contains a unique identifier of the
node and its current physical location. Hello messages are buffered by any
visible neighbor, that is, any node within wireless transmission range.
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2. The node reads from its message buffer all hello messages received during
the previous round and distills from these a graph of its visible neighbors
weighted by distance.

3. Taking the local graph of visible neighbors just distilled by the node, it then
calculates the minimum spanning tree of that graph.

4. The nodes in the local minimum spanning tree which are directly connected
(one-hop away) are selected to be the node’s new neighbors, meaning those
to which it will transmit data during this local round.

5. The node resets its round timer for rd, and waits for the timer to expire.

As shown in [18], LMST has a number of advantageous properties, including low
power usage, and a provably small number of neighbors for each node, which
reduces medium contention and increases bandwidth. Furthermore, it is also
shown that LMST satisfies the crucial property of maintaining network connec-
tivity. That is, if the graph whose edges link the sensor nodes within wireless
reach of each other is connected, then the considerably smaller subgraph com-
puted by LMST is also connected. However, LMST is an idealized design, which
does not take into account crucial issues that must be faced in a real imple-
mentation. As we show later, the crucial requirement of maintaining network
connectivity is soon lost when such issues are modeled. It thus remains an open
question how LMST can be refined into a realistic design where such realistic
issues are addressed and where network connectivity is still maintained.

3 Idealized LMST Model in Real-Time Maude

This section describes our formal specification and analysis in Real-Time Maude
(RTM) [22] of the idealized version of LMST summarized in Section 2. We do
this following the general methodology for formal modeling of wireless sensor
networks proposed in [23,24], incorporating many modeling constructions essen-
tially unchanged. This first step of modeling and analysis serves two purposes.
First, since probabilistic phenomena are not yet modeled at this idealized level,
it serves as a warm-up exercise to later see how real-time specifications of wire-
less sensor network protocols in RTM can be naturally extended to probabilistic
real-time specifications. Second, since the network connectivity invariant was
only shown by high-level analytic arguments in [18] but never formally verified,
it also serves as a sanity check to obtain independent, model checking evidence
that the invariant holds, and to indirectly gain further confidence that our for-
mal RTM specification faithfully captures the idealized LMST design. We first
recall some background on real-time rewrite theories and their use in modeling
wireless network protocols. We then summarize the specification of LMST as a
real-time rewrite theory and its formal analysis in RTM.

3.1 Modeling Wireless Networks in Real-Time Maude

The key idea of rewriting logic [19] is to model a concurrent system as a rewrite
theory R = (Σ, E, R), where (Σ, E) is an equational theory whose types and
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function symbols are described by a signature Σ, and having a set of equations
E; and where R is a collection of rewrite rules. The basic idea is that the states
of the concurrent system thus specified are elements of the algebraic data type
(initial algebra) TΣ/E associated to the equational theory (Σ, E), whereas the
concurrent transitions of the system are the possible rewrites allowed by the
rewrite rules R. For our purposes in this paper it is useful to instantiate this
general idea to the case of object-based distributed systems. For such systems it
is often useful to model the distributed state as a “soup” or multiset of objects
and messages, of types (sorts) Object and Msg . Such distributed, soupy states
can be called configurations and belong to a sort Configuration, which contains
Object and Msg as subsorts. The soup-like nature of the state is algebraically
modeled by declaring a binary multiset union operator (which we can describe
with empty, juxtaposition syntax) satisfying the axioms of associativity and com-
mutativity, and having the empty multiset null as its identity element. Thus, if
O1 and O2 are objects, and M1, M2, and M3 are messages, then the juxtaposi-
tion O1 O2 M1 M2 M3 is a configuration made up of those objects and messages,
where the associativity and commutativity axioms mean that no parentheses are
needed, and the order in which the objects and messages appear is immaterial.
In the Maude rewriting logic language [5] and in its RTM extension, objects of
a given class C in a given state are represented as terms of the form

< O : C |attr1 : val1, . . . , attrn : valn>

where O is the object’s name or identifier, C is the object’s class, and where
val1 to valn are the current values of the attributes attr1 to attrn, respectively,
which in a given class C are required to have specified sorts s1, . . . , sn. This
requirement is specified in a class declaration of the form

class C | attr1 : s1, . . . , attrn : sn.

The dynamics of an object-based distributed system are then specified by multi-
set rewrite rules, where one or more objects and/or messages in a configuration
are rewritten to other objects and/or messages.

How about real-time object-based distributed systems? They can be formally
specified by real-time rewrite theories [21], where the rewrite rules now have time
duration information, that is, they are conditional rewrite rules of the form

t
τ−→ t′ if cond

with t and t′ multiset expressions involving objects and messages, and with τ
a time expression, that is, a term of sort Time, where the time domain can
be chosen to be either discrete or dense. If τ = 0, then we call the rule an
instantaneous rule, and we omit the 0 label. Otherwise we call the rule a tick rule,
because time is advanced. Since time should advance not just for a local state, but
for the whole system, the global configuration of a system is encapsulated by a
bracket operator, so that the global state has the form {t}, with t a configuration
of objects and messages. theories can be desugared into ordinary rewrite theories
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[22]. The trick is to model the global state {t} as a pair ({t}, α), where α is the
current value of a global clock. Then a tick rule {t} τ−→ {t′} if cond is
desugared into an ordinary rewrite rule

({t}, α) −→ ({t′}, α + τ) if cond

Real-Time Maude is an extension of Maude that directly supports the speci-
fication of real-time systems as real-time rewrite theories. It performs the above
desugaring to execute such rewrite theories in the underlying Maude system. It
also supports breadth-first search and model checking of LTL properties by com-
pilation into Maude, where now such LTL properties may involve predicates that
inspect the global clock or the state of particular timers in some objects, and
where the model checking can specify a time bound [22]. In [23,24], Real-time
Maude has been shown to be very well suited to model and formally analyze wire-
less network protocols, in particular we utilize their models of standard wireless
communication types. The first is unicast messaging:

sort DirectedMsg . subsort DirectedMsg < Configuration .
op directed-msg : Receiver Msg -> DirectedMsg .

Broadcast messages are used generally to send a message to all nodes within
a certain physical radius of the transmitting node. In our specification we use
them to model both wireless data transmission as well as part of our 802.11
MAC model. They use the following syntax:

sort BroadcastMsg . subsort BroadcastMsg < Configuration .
op broadcast-msg : Sender Msg -> BroadcastMsg .

Message broadcasting is modeled as in [24], by defining a set of equations to
turn each broadcast message into a set of unicast messages, one such message
for each node within transmission range.

The last wrapper is used to delay the reception of a message with respect to
real time. If the message is a true wireless transmission, then this delay corre-
sponds to the transmission delay; in other cases it may model different things.
We use delayed messages extensively to model timers like the one used by each
node to count time between successive rounds.

sort DelayedMsg . subsort DelayedMsg < Configuration .
sort Delay . subsort TimeInf < Delay .
op delayed-msg : DirectedMsg Delay -> DelayedMsg [right id: 0] .
op delayed-msg : BroadcastMsg Delay -> DelayedMsg [right id: 0] .

Finally, [22] shows how all of the time-elapsing events of the system should
be distilled into a single tick rewrite rule of the form

crl [tick] :
{Cx:Configuration} => {delta(Cx, Tx)} in time Tx:Time

if Tx <= mte(Cx) .
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using two operator symbols delta and mte. The first operator defines the effect
of the time elapse for the system configuration, and the second operator defines
the maximum time that can elapse before the next instantaneous event. Both
are defined over the Configuration sort, and act to distribute over the objects
and messages in the configuration. For example, the delta function is partially
defined by (we indicate the sort of each variable with its first use)

eq delta(delayed-msg(DMx:DirectedMsg, Dx:Delay)
Cx:Configuration
, Tx:Time)

= delayed-msg(DMx, Dx monus Tx)
delta(Cx, Tx) .

3.2 Idealized Model of LMST in Real-Time Maude

Our definition of the LMST protocol hand specifies the description given in [18]
through a set of (mostly) localized rewrite rules governing state changes of the
nodes individually. In order to make our version conform to the idealized defini-
tion of the protocol, we have to define guards for each rewrite rule that consider
the entire state before firing. For example, we guard the rule for updating a
node’s local topology to ensure that all outstanding hello messages are received
prior to doing the update calculation. This corresponds to a tacit assumption
made by the protocol that before a topology update occurs, a hello message has
been received from every visible neighbor.

The protocol is idealized in the sense that it is free from real-world conditions
such as message loss, node mobility, imperfect quartz clock timers, and so on.
In addition, we assume that all the round timers are synchronized, so that all of
them always signal a new round in unison. The following class definition defines
wireless sensor nodes:

class SensorNode |
location : Location
, received-HMs : HelloMsgValueSet
, neighbor-set : NodeIDSet
, transmit-radius : Float .

The attributes give the node’s physical location, the buffered hello messages
received since the start of the current round, the current set of neighbors, and
the current transmission radius. Since the goal of a topology control protocol
is to determine each sensor node’s wireless transmission strength, it may seem
curious that this information is missing from the above definition. The reason
is that our analysis will only be concerned with connectivity, for which having
the transmission radius is simply more convenient. We note that transmission
strength can be calculated from the transmission radius and knowledge about
the radio propagation model.

There are three message constructors: one to represent wireless communica-
tion of hello messages, and two others representing other state-changing actions
that a node must take itself.
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msg round-timer-msg : -> Msg .
msg update-msg : -> Msg .
msg hm-msg : HelloMsgValue -> Msg .

op <_,_> : NodeID Location -> HelloMsgValue .

The payload of a hello message is the sending node’s identifier plus its location.
This message is broadcast by each node at the beginning of each new round (see
Section 2). There are exactly three rewrite rules in the model, one for each of the
messages above. The idea is that every concurrent event in the system has an
associated message, and is acted upon when received by the node it is directed
to. This idea is similar to what is suggested in [3].

Instead of presenting the rules verbatim from our idealized model, we simply
indicate what each rule does using prose. This saves space and omits syntactic
overhead which does not directly contribute to the interesting actions being per-
formed. Our model, which can be downloaded [1], contains the exact definitions.

The events associated with the above messages are as follows:

1. When a round-timer-msg is consumed, the associated node performs three
actions. It first broadcasts a hello message identifying itself and giving its
current location. Second, it schedules an update-msg for itself. Third, it
resets its round timer, emitting a delayed round-timer-msg.

2. When a hm-msg is consumed, the receiving node simply adds the message
payload to the received-HMs set.

3. When a update-msg is consumed, the receiving node updates its local topol-
ogy (setting neighbor-set). The updated topology is calculated from the
minimum spanning tree of the graph defined by the hello messages received
during the previous round. One slight complication is that for the topology
to conform to the idealized specification, we must ensure that all hello mes-
sages be received during the current time instant before a topology update
is executed. This is checked for using an equationally defined guard and a
conditional rewrite rule.

The three rules described above essentially define the entire model. Most of the
specification focuses on defining the minimum spanning tree calculation.

The formal model can be analyzed through time-bounded LTL model checking
in RTM. When we analyze the model, we start with an initial configuration
that is primed by inserting one directed round timer message for each node in
the configuration, set to be consumed instantly at time 0. The property that
we are interested in is total network connectivity, which means that multi-hop
connections exist from every node to every other node in the network. As an LTL
safety formula, the property is expressed as the invariant � connected, with
connected an equationally-defined predicate (see [1]). It computes the strongly
connected components of the graph defined by the union of all neighbor sets.

The model checking that we have done is to check that the connectedness
property holds in our model with respect to a set of randomly selected initial
configurations, each involving a small number (4) of nodes and with a time bound
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of one round. It is important to make clear exactly what this result means with
respect to the idealized protocol. The non-determinism exhibited in our model
comes from selecting the order in which nodes broadcast hello messages, receive
messages, etc. However, due to the guard on the topology update rule, the non-
determinism that was added does not result in many interesting interactions.

4 Probabilistic Modeling and Analysis of LMST

A major issue with the analysis of the previous section is that standard model
checking algorithms do not apply to probabilistic phenomena, such as the uniform
distribution of nodes in a sensing area. Indeed, many probabilistic phenomena
naturally exist for wireless protocols. In this section we describe two realistic
refinements of the idealized LMST model: one with unsynchronized local round
timers, and the other with quartz clock drift, 802.11 MAC contention, and mes-
sage delay. Due to space limitations, we have omitted two other refinements –
one with node mobility and another with probabilistic message loss – that we
have also modeled and analyzed (see [11]). The refinements are modified ver-
sions of the idealized model, transformed into a standard rewrite theory, with
new rules and probabilistic annotations. The annotations take the formalization
outside the realm of standard rewrite theories and into the realm of probabilistic
rewrite theories [13,3]. After the probabilistic models are defined, we show how
to automatically analyze them using the logic of quantitative temporal expres-
sions (QuaTEx) [3] and the statistical model checking algorithms implemented
by the VeStA tool [3,26]. The analysis reveals significant disconnectedness, or
bugs, under the conditions imposed by each of the refinements.

4.1 Probabilistic Rewrite Theories, QuaTEx, and VeStA

A probabilistic rewrite theory [13,3] replaces the usual rewrite rules with proba-
bilistic ones of the form

l(x) −→ r(x, y) with probability y := p(x)

Such a rule is non-deterministic, because the term r has new variables y disjoint
from the variables x appearing in l. Therefore, a substitution θ for the variables
x appearing in l that matches a subterm of a term t at position q does not
uniquely determine the next state after the rewrite: there can be many different
choices for the next state, depending on how we instantiate the extra variables
y in r. In fact, we can denote the different next states by expressions of the
form t[r(θ(x), σ(y))]q, where θ is fixed as the given matching substitution, but σ
ranges over all possible substitutions for the new variables y. The probabilistic
nature of the rule is expressed by the notation: with probability y := p(x),
where p(x) is a probability measure on the set of substitutions σ (modulo the
equations E in a given rewrite theory). However, the probability measure p(x)
may depend on the matching substitution θ. We sample y, that is, the substitu-
tion σ, probabilistically according the probability measure p(θ(x)).
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PMaude [3] is an extension of Maude for probabilistic rewrite theories. Like
Real-Time Maude, PMaude is implemented as a theory transformation using
Maude’s reflection capabilities. This involves desugaring the probability anno-
tation in a probabilistic rewrite rule and giving rewriting definitions for the
various probability distributions. The desugaring makes the probability measure
y := p(x) a rewriting condition, p(x) −→ y, and goes into a plain conditional
rewrite rule. The probability distributions are implemented using special features
in Maude for generating random numbers according to a uniform distribution
(see [5, §9.3]). The uniform distribution is then used to sample into other distri-
butions, for example

rl BERNOULLI(R) => if rand / rand-max < R then true else false fi .

is used to sample a Bernoulli distribution with success probability R, given as a
rational number. The operator rand is treated specially by Maude; it returns a
natural number between 0 and the constant rand-max.

As we noted above, both Real-Time Maude and PMaude are implemented
as theory transformations. So via Real-Time Maude we can go from a real-
time rewrite theory to a plain rewrite theory, and via PMaude we can go from
a probabilistic rewrite theory to a plain rewrite theory. To combine the two
paradigms what we have done is to manually apply the desugaring described
above for PMaude within our larger real-time rewrite theory.

For analyzing probabilistic rewrite theories, it is often desirable to state logi-
cal queries quantitatively, that is, not with a true or false answer, but with a real
number corresponding, for example, to a probability or, more generally, to some
quantitative measurement of our system. For this reason, we use the QuaTEx
probabilistic temporal logic of Quantitative Temporal Expressions proposed in
[3]. This language is supported by the VeStA tool [26], which has an interface to
Maude. The key idea of QuaTEx is to generalize probabilistic temporal logic for-
mulas from Boolean-valued expressions to real-valued expressions. The Boolean
interpretation is preserved as a special case using the real numbers 0 and 1. As
usual, QuaTEx has state expressions, evaluated on states, and (real-valued) path-
expressions evaluated on computation paths. The notion of state predicates is
now generalized to that of state functions, which can evaluate quantitative prop-
erties of a state. QuaTEx is particularly expressive because of the possibility of
defining recursive expressions. In this way, only the next operator (# in VeStA
syntax) and conditional branching (if Bexp then Pexp else Pexp′ fi, with
Bexp a Boolean expression and Pexp, Pexp′ path expressions) are needed to de-
fine more complex operators, such as “until”. Model checking queries are given
as expected values of path expressions. We refer to [3] for a detailed account
of QuaTEx and its semantics. The VeStA tool [26] then performs statistical
model checking on a probabilistic system by evaluating a QuaTEx expression
on computation paths obtained by Monte Carlo simulation. The model checking
query is parameterized by two values, α and δ, which are user-provided. VeStA
responds to a query with a (1 − α) · 100% confidence interval bounded by δ
for the expected value of the random variable defined by the QuaTEx formula.
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Depending on the slack allowed by the given parameters, VeStA may need greater
or fewer sample runs to compute this interval.

Using VeStA requires that the PMaude model be free from unrestrained non-
determinism that does not come from sampling a probability distribution. In
particular, for the tool to work correctly it should never be the case that two
rules apply to the same term. One way of solving this is described in [3]. There,
a uniform distribution is used to give each event a (probabilistically) unique
identifier and an event queue then orders the events by identifier. Each rewrite
rule can only fire if the event associated with it is the one indicated by the front
of the event queue. In our case this matching is done by adding a third field to
the directed message construct and adding a special object with the event queue

op directed-msg : Receiver Msg EventID -> DirectedMsg .
class Control |

event-queue : EventQueue .

Finally, we change each of the rules to match the directed message being con-
sumed by the rule (all of our rules are of this form) with the the event at the
front of the queue. We found that the details of handling events and the event
queue are tricky to do cleanly. We did not want the intent of the rules to be ob-
scured by a mass of syntax that simply deals with the event queue mechanism.
The details of our eventual solution can be found in [11,1].

4.2 Refinement 1: Unsynchronized Timers

Our first refinement changes the round timers so that they are no longer globally
synchronized. Instead, the timers are initially set to expire somewhere in the
time interval [0s, 10s], rather than at time 0 as in the idealized case. This is
accomplished by adding a new message type , init-msg, and an associated
probabilistic rewrite rule. In the starting configuration the only messages are the
initialization messages, one for each sensor node, and we execute the rule below
to get to the desired starting state where the protocol can be applied. The rule
draws a value uniformly from [0, 10] and uses this value to initialize the node’s
round timer. Note that we use a simplified syntax below, but the intent should
be clear. In addition, we use (...) to indicate omitted code.

rl [init] : init-msg ... => delayed-msg(round-timer-msg, y) ...
with probability y = uniform-dist(0(s), 10(s)) .

This rule is also used to initialize the node’s location (not shown), therefore
overcoming one of the problems with the analysis done in Section 3, namely, the
inability to have the model checking analysis directly consider all (probabilisti-
cally) possible starting positions for the nodes.

Although this is a very simple change, it exposes a bug in the protocol. To see
this, we first recast the connectedness property as the QuaTEx formula below.
The key idea is to calculate the percentage of an interval, [lower, upper], when
the network is totally connected. Whenever the tick rule is applied PrctCon looks
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at the interval stepped over (using #, QuaTEx’s next operator), determines if the
network was connected, determines if the time interval overlaps [lower, upper],
and concisely records this information.

PrctCon(x:Bool, y:Float, z:Float) =
if time > lower and y < lower then

#PrctCon(connected, time, z + Start(x, y));
else if y >= lower and time <= upper then

#PrctCon(connected, time, z + Mid(x, y))
else if y > upper then

100.0 * (z + End(x, y) / (upper - lower));
else

#PrctCon(connected, time, z);
fi; fi; fi;

The x argument of PrctCon records whether or not during the previous time
step the network was connected, y records the starting time of the previous time
step, and z enumerates the time that the network is connected in the interval.
The state expressions, such as connected and time, have the obvious meanings.
The value returned by model checking the above QuaTEx formula in VeStA is
an interval describing, statistically, the expected value of the percentage of time
the network was totally connected during the time interval [lower, upper].

In Figure 1b we have plotted the expected value of PrctCon for the first ten
global rounds of network operation. The result shows endemic disconnectedness
during the first two global rounds. For comparison, we plot the same value for a
probabilistic version of the idealized model in Figure 1a. In Section 5 we use a
novel redesign methodology to fix the bug causing the disconnectedness.

4.3 Refinement 2: Delay Uncertainty

The LMST protocol is highly localized in the sense that very little collaboration
between nodes takes place. Therefore it is especially important to investigate the
inter-node ordering of events and messages. Our second refinement addresses: (1)
wireless transmission delays, (2) imperfections in quartz clock timers, and (3)
the 802.11 MAC contention procedure [4]. Item (1), wireless transmission delay,
is easily implemented using the delayed-msg construct defined in Section 3.1.

For realistic quartz clocks, additional infrastructure is needed. First, the wire-
less sensor node state gets a new attribute, clock-drift, and the initialization
rule is modified so that each sensor node gets a value, uniformly distributed in
the [−5.0, 5.0] interval, for its clock drift. A slow clock is represented with neg-
ative values, and a fast clock with positive values. The absolute value gives the
drift in parts per million.

In addition, we introduce a Timer sort, which we treat as a new type of Delay ,
defined by constructors

sort Timer . subsort Timer < Delay .
op ACTIVE : Float -> Timer .
op SUS : Float -> Timer .
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(a) Connectedness in idealized model.
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(b) Connectedness in refinement 1.
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(c) Connectedness in refinement 2.

Fig. 1. Quantified connectedness of the idealized model and refinements 1 and 2

The floating point arguments indicate the amount of time remaining according
to the node’s internal clock, which may be fast or slow. The two constructs dif-
ferentiate between an active timer and one that has been suspended. Suspended
timers are used as part of the 802.11 MAC contention protocol. Quartz clock
drift is then modeled by replacing all event delays associated with timers with
these constructs; plus a few auxiliary operations to update the constructs to
account for drift. The main change that we need to make is in the definition of
delta for the tick rule, which now must scale time decrements by clock drift. To
do this we add a new equation to the definition of delta, exactly like the one
in Section 3.1 but with

... delayed-msg(DMx, ACTIVE(Fx1 monus Tx with-scale Fx2))) ...
eq Fx monus Tx with-scale Fy =

if Fy < 0.0 then
Fx + float(Tx) - (float(Tx) * ((- Fy) / 1000000.0))

else
Fx + float(Tx) + (float(Tx) * ((Fy) / 1000000.0)) fi .

substituted for delayed messages having a regular delay. Note that we omit
matching the drift (Fx2) in appropriate sensor node to save space. For suspended
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timers, the delta function leaves the timer unchanged. There are some compli-
cations to deal concurrently with the event queue (see [11,1]).

The 802.11 MAC contention procedure defines how sensor nodes try to arbi-
trate access for the transmission medium. Too much noise in the medium can
cause messages to be dropped, so the basic idea of the protocol is that each node
measures the noise level and waits when it is too noisy. To model the 802.11
MAC contention procedure we define four new events:

msg difs-timer-msg : -> Msg .
msg backoff-timer-msg : -> Msg .
msg medium-busy-msg : -> Msg .
msg medium-clear-msg : -> Msg .

and a modification of the round timer rule. Under the 802.11 regime [4] when a
sensor node wants to transmit a message (e.g. a hello message) it sets two timers.
The DIFS timer is set for a fixed time period and is made active rightaway. The
backoff timer is set probabilistically and waits for the DIFS period to finish before
it becomes active. Therefore we change the round timer message event to emit
two delayed messages according to the protocol (again, simplified syntax below)

rl [round-timer-msg] : round-timer-msg ... =>
delayed-msg(difs-timer-msg , ACTIVE(128(mu-s)))
delayed-msg(backoff-timer-msg , SUS(y * 50(mu-s)) ...

with probability y := uniform-dist(0, 15) .

The interaction between the two timers is governed by the carrier sense mech-
anism, which is implemented using the other two new message types defined
above. In addition to these messages we add a new field to our sensor node class
called medium-busy, which takes a natural number value and records when the
medium is busy. The value is 0 when the medium is not busy, gets incremented
on every medium-busy-msg, and decremented on every medium-clear-msg.

Due to space limitations we cannot give all of the details of our 802.11 model
(see [11] for full details). The part of the protocol that we have not specified here
defines how the two timers respond to changes in the carrier sense mechanism.
The basic idea is that whenever the medium becomes busy (medium-busy field
goes from 0 to 1), the backoff timer is suspended and the DIFS timer gets
reset. When the backoff timer finishes, then the node can finally transmit its
message. Since we are only concerned with hello messages, whenever a backoff
timer message is consumed, the node transmits its hello message.

Analysis results are plotted in Figure 1c and show real disconnectedness during
portions of the first ten rounds. The significance of such a level of disconnect-
edness depends on many variables. What we found though is that an expected
disconnectedness value of x% usually corresponds to an x% chance that the net-
work is disconnected for the entire round. The bugs causing the disconnectedness
are identified and fixed in Section 5.

5 A New Realistic Design of LMST

The methods of statistical quantitative analysis have so far been used to diag-
nose serious issues with the LMST protocol, but, unfortunately, the problems
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uncovered remain otherwise idiopathic. Determining the causes of the unde-
sired behavior is a crucial part of the formal analysis process. In this section
we propose a new method for redesigning probabilistic systems by statistical
quantitative analysis. Instead of calculating expected values E[X ] directly, we
calculate mathematical correlations, ρ(X, Y ), of two random variables. The idea
is that one of the random variables represents the symptoms of a bug, and the
other a hypothesized cause. This method can save significant time during the
debugging and redesign process by providing a way to isolate the cause of the
a bug without first implementing a hypothesized fix, which might require sub-
stantial effort, and only afterward trying again to detect the bug in the “fixed”
model.

5.1 A Formally-Based System Redesign Methodology

Debugging and redesigning a complex protocol is rarely a trivial task, partic-
ularly when the protocol is concurrent and/or probabilistic, because specific
symptoms are usually difficult to reproduce. For concurrent finite state systems
one can witness bugs directly using standard model checking algorithms to gen-
erate counter-examples. These can then be used to diagnose the cause of a bug
and guide the effort required to actually fix it. However, for probabilistic systems
and approximate quantitative analysis no analogue seems to exist.

Moreover, the process of determining the cause of a bug is extremely impor-
tant, because otherwise, without a known cause, any effort used to modify the
model can easily be wasted if the changes do not happen to hit on the cause. This
wasted effort can be substantial if, for example, a fix does not fit cleanly within
the current architecture of the model specification. Therefore it is essential to
know beforehand that such efforts will likely result in success.

Our proposed methodology to address these issues begins with the idea of us-
ing statistical quantitative analysis to calculate mathematical correlations. The
correlation of two random variables, X representing the symptoms, and Y the
hypothesized cause, is calculated to establish the likelihood of a causal relation-
ship between X and Y . Of course, X and Y being correlated does not prove a
causal relationship, but it is a necessary condition for causality and indicative
of it. Since specifying X and Y , for example as QuaTEx formulas, usually re-
quires much less effort than directly modifying the model, the process can lead
to reduced debugging and redesign time. However, unlike the finite state concur-
rent system case, some extra work must be done to formulate Y . The proposed
system redesign methodology assumes two initial items:

• A probabilistic model M, for example a PMaude module.
• An observable value measuring, for any given sample from the probability

space defined by M, fit or disagreement with required behavior. This takes
the form a random variable X over the sample probability space and can be
defined by a QuaTEx formula.
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The methodology then proceeds through the following steps:

1. Use statistical quantitative analysis, using tools such as by VeStA or PRISM
[14], to calculate E[X ]. If the value indicates buggy behavior, then go on with
the remaining steps, otherwise there is no need to go further.

2. Hypothesize a cause for the bug. The hypothesized cause can be formulated
also as a QuaTEx formula, yielding a second random variable, Y , on the
sample probability space, M.

3. The next step is to calculate the correlation coefficient (see [25]), ρ(X, Y ),
which is easily accomplished by observing the following expansion, which
turns ρ(X, Y ) into a simple expression of expected values

ρ(X, Y ) =
Cov XY

σ(X)σ(Y )
=

E[XY ] − E[X ]E[Y ]
√

E[(X − E[X ])2]
√

E[(Y − E[Y ])2]

Therefore, statistical quantitative analysis is used to first calculate E[X ],
E[Y ], and E[XY ]; and then secondarily using these values we calculate
E[(X − E[X ])2] and E[(Y − E[Y ])2]. The final value of ρ(X, Y ) is easily
calculated from these values. If the correlation is not significant (i.e. close to
0) then this step is repeated with a new hypothesis, otherwise we go on.

4. Modify the model M to remove the cause articulated through Y, yielding a
new model M′. For M′ calculate, via statistical quantitative analysis, the
expected value of X ′, which captures the same observable value as X but is
a random variable over the probability space defined by M′ instead of M.
If E[X ′] shows no buggy behavior then we finish, otherwise repeat.

We feel that this method adds rigor to the process of redesigning a probabilis-
tic system, and does so without a lot of auxiliary, extraneous work that would
otherwise be needed. Compared to a more informal method, the extra burden
on the designer is only in expressing Y concretely. While certainly not always
trivial, writing down the hypothesized cause has a number of benefits outside of
just fixing the immediate bug. For example, it provides concrete documentation
of the bug, assurances that the bug has truly been fixed, and an easy regres-
sion test to make sure the bug is not re-introduced in the future. In Section 5.2
we apply this methodology to determine the causes of the bugs uncovered in
Section 4. Using this knowledge we then redesign the LMST protocol to reach a
realistic, implementable design which ensures connectedness.

5.2 Redesign of the LMST Protocol

Let us now consider applying the redesign methodology to our model of the
LMST protocol. The analysis results for refinements 1 and 2 (Figure 1) show
significant disconnectedness behavior. With the first refinement the disconnect-
edness appears to be transient, but the second refinement results in pervasive
disconnectedness across global rounds. We fix both bugs in this section.

According to the methodology outlined in the previous section, we need to
define a random variable X describing the correctness property that we are
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(a) Debugging of refinement 1.
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(b) Debugging of refinement 2.
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(c) Connectedness in our LMST redesign.

Fig. 2. Causal analyses used in our LMST redesign

interested in. This poses a subtle problem, given the data presented in Figure 1,
because we evaluated multiple separate QuaTEx formulas, one for each global
round, to create the plot. Our solution to making this set of random variables
into a single one is to, for each simulation run, encode a probabilistically chosen
global round to evaluate the disconnectedness property on.

We first look at refinement 1, and the set of intervals partitioning global
round 2 into 10 parts. We still need to hypothesize and quantify a cause for
the undesired behavior witnessed through X . The hypothesis that we made was
that the bug involved something we will call late neighbors. Late neighbors are
visible neighbors that do not make themselves known to other nodes within their
transmission range during global round 1 because their local round begins later.
Since they send their hello messages late, they are not received in time to be
incorporated into the (early) neighbor’s first local topology update. Due to space
limitations, we again refer to [11,1] for full details.

Figure 2a plots connectedness versus the total number of late neighbors for
nodes that have not yet begun their second local round. It is clear that the
two plots exhibit strong correlation, which can be calculated for the random
variables just described using the methods of the previous section. The resulting
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correlation is 0.99, thus indicating that we should make sure that the problem
of late neighbors is fixed.

The situation with refinement 2 is even more interesting, because, as seen
in Figure 1c and re-printed in Figure 2b, the disconnectedness behavior of this
model is persistent across rounds. We conjectured that what might be happening
was something like the following: one node with a fast clock processes a round
timer event so early, relative to a neighbor, that it sends its round i + 1 hello
message before the second node processes its round i message. Therefore, the
second node gets a duplicate message from the first node.

To precisely quantify this conjecture, we defined a QuaTEx formula to cal-
culate the number of duplicate messages where the node sending the duplicate
message has a clock that is fast relative to its neighbor. Figure 2b plots results
for both random variables, and it is easy to see in this graph that the two are
correlated. The exact value is −0.13, indicating significant correlation, but not
as high as we would like for such a small number of intervals. However, with
the outlier for global round 1 removed the correlation rises to 0.98. Therefore, it
seems reasonable to try to fix the bug by removing duplicate messages.

We want to fix both bugs uncovered above: the one due to late neighbors
and the other due to duplicated messages from clock drift. The late neighbors
problem is easily solved by each node broadcasting a hello message as soon as
it turns on. To prevent clock drift and MAC contention from causing duplicate
messages, we take a two-pronged approach. Since drift and contention only cause
small perturbations in the amount of time between successive hello messages, our
solution is to delay topology updates for a few milliseconds after a round timer
event. However, this does not completely solve the problem and in fact only
delays it as the clocks drift farther apart. So the second component of our fix is
to apply an ultra-lightweight clock synchronization algorithm [16]. The overhead
of the algorithm is that now each hello message gets time-stamped.

Our new design, with the three fixes explained above, completely removes the
problems that we observed in refinements 1 and 2. Correctness results, based on
quantitative statistical analysis of our new design, are given in Figure 2c.

6 Related Work and Conclusions

Alternatives to Real-Time Maude [22] include Uppaal [17] and HyTech [7], which
use timed and linear hybrid automata as the underlying modeling formalisms.
Compared with Real-Time Maude, Uppaal and HyTech trade expressibility in
the modeling language for certain decidability results.

There are various alternatives to PMaude and VeStA. The PRISM tool [14] sup-
ports a BDD-based probabilistic model checking algorithm and also an approxi-
mate, statistical model checking analysis through Monte Carlo techniques. PRISM
supports a large number of modeling formalisms [14]. In [12] the algorithm used by
VeStA is refined so that an the sample size necessary to achieve normality in the
data can be computed before analysis begins. The modeling language used is prob-
abilistic rewrite theories. Other probabilistic model checking tools include APMC
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[8], E � MC2 [9], and Rapture [10]. As with Real-Time Maude, the most signif-
icant difference between PMaude/VeStA and other tools is the tradeoff between
expressiveness and algorithmic power.

The combination of PMaude and VeStA has been used in multiple case stud-
ies, including the analysis of a DoS resistant TCP/IP protocol [2] and two case
studies involving distributed object-based stochastic hybrid systems [20]. In ad-
dition there are other case studies on 802.11 [15] and sensor networks [6].

In conclusion, this work has presented two main contributions. First, we have
extended the formal specification and analysis approach for wireless sensor net-
works advocated by Ölveczky and Thorvaldsen [23,24] to the probabilistic and
statistical model checking setting, demonstrating significant flaws in a realistic
protocol. Second, we have presented a system redesign methodology applicable
to probabilistic systems in general and wireless sensor networks in particular
where QuaTEx-based quantitative measurement of bugs and their hypothesized
causes can be correlated; and the knowledge thus gained can be used to redesign
a system free of the given bugs.
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Abstract. This paper presents a minimal and complete set of structural
refactoring rules for the Object-Z specification language that allow for
the derivation of arbitrary object-oriented architectures. The rules are
equivalence preserving and work in concert with existing class refinement
theory, so that any design derived using the rule set can be shown to be
equivalent to, or a refinement of, the original specification.

1 Introduction

Class instantiation, class inheritance, polymorphism, and generics (class pa-
rameters or templates) are four object-oriented architectural constructs which
are almost universal. They underpin the paradigm and provide the modularity
and reuse capabilities. Object-oriented formal specification languages such as
Object-Z [14], Alloy [6], and VDM++ [7] share these core features with their pro-
gramming language counterparts. However, the way they are utilised to capture
requirements associated with a problem domain is often quite different from the
way in which they are used to implement a specific solution to a problem. The
result is that an object-oriented specification does not usually directly resemble,
in a structural sense, the design of the desired implementation. Here, structure
is interpreted as the relationships between classes. Generally, a set of specifi-
cation classes will describe a system of many more interacting implementation
classes.

To bridge this gap between specification and implementation, specification
refactoring rules have been proposed [7,8,9,11,2,5]. These allow the structure of
a specification to be incrementally transformed to represent a given design. Gold-
sack and Lano [7,8], for example, introduced the Annealing rule to VDM++.
This rule effectively splits a class’s state and operations into two classes — one
holding a reference to an instance of the other. It was later adapted to Object-Z
by McComb [9] who also introduced the Coalescence rule. This second rule
merges two classes together to create a new class that simulates both. Together
these rules have been shown quite effective for introducing designs [11].

However, these rules both deal with referential structure, and do not cover
the other primary forms of object-oriented design structure: inheritance, poly-
morphism and generics. In this paper, we fill this gap by formalising rules for
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Object-Z that permit the modification of inheritance hierarchies and allow classes
to be parameterised. Furthermore, we show that our set of rules is both minimal
and complete for refactoring Object-Z specifications to derive designs.

We begin in Section 2 with an overview of the Object-Z language. We then
provide rules to introduce generic class parameters, to introduce polymorphic
behaviour, and to introduce inheritance in Sections 3 to 5 respectively. Together
with the Annealing rule, these three rules have been shown to be complete in
the sense that any reasonable design can be derived from any specification [10].
The proof is outlined in Section 6 before we conclude in Section 7.

2 Object-Z

Object-Z [14] extends the formal specification language Z [16] with explicit sup-
port for the fundamental constructs of object orientation: (generic) classes, ob-
jects, inheritance and polymorphism. Here we overview the notation for basic
classes and objects. Other notation will be introduced in the following sections.

A class in Object-Z groups together a collection of state variables with their
initial conditions and a set of operations which may change their values. The
state variables, initialisation predicate, and operations of a class are collectively
referred to as its features. The interface of the class is specified by a visibility list
of the form �(. . .) listing its externally accessible features.

Consider, for example, the following Object-Z class Stack .

Stack
�(Push,Pop, INIT )

LIMIT : N

LIMIT = 1024

items : seq N

#items ≤ LIMIT

INIT
items = 〈 〉

Push
Δ(items)
item? : N

status ! : Z

#items < LIMIT ⇒ status ! >= 0 ∧ items ′ = 〈item?〉 � items
#items ≥ LIMIT ⇒ status ! < 0 ∧ items ′ = items

Pop =̂ [Δ(items) item! : N | items = 〈item!〉 � items ′ ]
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The class Stack has a state variable items of type seqN (a sequence where
the elements are natural numbers). The possible bindings of values for state
variables are constrained initially by the initialisation predicate, and by the
invariant predicate contained within the state schema. Hence, the items sequence
is initially empty.

Each operation is a schema describing the relationship between pre- and post-
state variables. A variable decorated with a prime, e.g., x ′, denotes the post-state
value. All post-state variables from the state schema are available to operations,
but by default they are equated to their pre-state counterparts (they do not
change). Operations may introduce constraints over post-state variables by in-
cluding them in a delta-list of the form Δ(. . .). Any variables included in the
delta-list have their pre-/post-state equality constraint relaxed.

For example, the operation Push from the Stack class concatenates (�) the
input item? to the beginning of the items sequence, if the size of items is less
than the LIMIT . Thus, items appears in the delta-list of Push. An output
variable status ! is set to be greater-than or equal-to zero if items can indeed
accommodate the new item, otherwise the status ! binds to a value strictly less-
than zero and items remains unchanged. The operation Pop in this example re-
moves the first item, bound to output variable item!, from the beginning of the
sequence.

Such a class can be instantiated within another class and its visible features
accessed using standard dereferencing notation. For example, consider the fol-
lowing class System which references a single object of class Stack .

System
�(Push,Pop, INIT )

s : Stack
INIT
s .INIT

Push =̂ s .Push
Pop =̂ s .Pop

Given the declaration s : Stack , the notation s .INIT denotes a predicate which
is true precisely when the referenced object is in its initial state. Also, the nota-
tion s .Push is an operation corresponding to the referenced object undergoing
its Push operation, and s .Pop is an operation corresponding to the referenced
object undergoing its Pop operation.

3 Introduce Generic Parameter

This section provides a description of the Introduce Generic Parameter

refactoring rule. Generic parameters in Object-Z allow a type, or a list of types,
to be passed as parameters to a class. Refactoring a specification to add support
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(references to C )

C
L == T
...

≡

(references to C [T ])

C [X ]

L == X
...

where X is fresh

Fig. 1. Introduce generic parameter refactoring

(references to C [T ])

C [X ]

L == X
M == S
...

≡

(references to C [T ,S ])

C [X ,Y ]

L == X
M == Y
...

where Y is fresh

Fig. 2. Repeated application of the introduce generic parameter refactoring

for generic parameterisation of classes is desirable, as it allows for the derivation
of library components, and increases reuse throughout the design as a single class
may be instantiated many times with different parameters. The parameterised
classes in Object-Z could possibly be implemented using the support for generics
in Java [1] or templates in C++ [15].

The rule is illustrated in Figure 1. A class C has a locally defined type L
which is defined to be the actual type T . When the rule is applied, the class C
is replaced with a class C [X ], where the name X is fresh, and the local definition
which previously defined L as T is changed to define L as X . All references to
C in the specification are replaced with references to C [T ], including references
for inheritance.

This refactoring rule only introduces one parameter, but repeated application
can provide as many parameters as necessary. As new parameters are added,
they can be appended to the right of the parameter list. For example, Figure 2
represents the result of the rule being applied again to the right-hand side of
Figure 1, introducing a new parameter Y to stand for an actual type S . Exactly
where in the list of parameters the new parameter is inserted is arbitrary, as
long as the references are updated in a consistent manner.

The soundness of this rule follows directly from the semantics of generic
parameters in Object-Z. A formal proof is presented in [10].
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3.1 Example

The Stack in Section 2 specifically deals with natural numbers, but through the
application of the above refactoring rule we are able to systematically introduce
a generic parameter.

First, the Stack class must undergo a refinement step to introduce a local
definition, such that the class conforms to the precondition required by the
refactoring rule. The refinement step (actually, an equivalence transformation)
would be proved using the simulation rules for Object-Z [3]. We present just the
result of the refinement step here.

Stack
�(Push,Pop, INIT )
L == N

LIMIT : N

LIMIT = 1024

items : seqL

#items ≤ LIMIT

INIT
items = 〈 〉

Push
Δ(items)
item? : L
status ! : Z

#items < LIMIT ⇒ status ! >= 0 ∧ items ′ = 〈item?〉 � items
#items ≥ LIMIT ⇒ status ! < 0 ∧ items ′ = items

Pop =̂ [Δ(items) item! : L | items = 〈item!〉 � items ′ ]

We are now in a position to apply the refactoring rule, which introduces the
parameter X to Stack and updates the reference to Stack in the System class to
instantiate the parameter with N.

System
�(Push,Pop, INIT )

s : Stack [N]
INIT
s .INIT

Push =̂ s .Push
Pop =̂ s .Pop
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Stack [X ]
�(Push,Pop, INIT )
L == X

LIMIT : N

LIMIT = 1024

items : seqL

#items ≤ LIMIT

INIT
items = 〈 〉

Push
Δ(items)
item? : L
status ! : Z

#items < LIMIT ⇒ status ! >= 0 ∧ items ′ = 〈item?〉 � items
#items ≥ LIMIT ⇒ status ! < 0 ∧ items ′ = items

Pop =̂ [Δ(items) item! : L | items = 〈item!〉 � items ′ ]

4 Introduce Polymorphism

Not all inheritance hierarchies take advantage of polymorphism in Object-Z, and
conversely not all polymorphism must be confined to inheritance hierarchies.
In programming languages like Java it is common to have classes implement
interfaces that provide a mechanism for polymorphism that is not related to
inheritance. This orthogonal treatment of polymorphism both in Object-Z and
in some programming languages warrants a rule specifically for its introduction,
rather than treating it as a by-product of introducing inheritance.

In Figure 3, the class C [P1, . . . ,Pm ] on the left-hand side has exactly n +1
means of referencing it: by C [P1, . . . ,Pm ], or by n axiomatically defined aliases
A1[P1, . . . ,Pm ],. . .,An [P1, . . . ,Pm ] which disjointly partition the references to
objects of C [P1, . . . ,Pm ]. The parameter lists [P1, . . . ,Pm ] are irrelevant to the
application of the rule, except that all classes A1, . . . ,An and C must have the
same arity. For brevity of presentation these parameter lists are omitted from
the discussion below.

The introduction of polymorphism is normally motivated by the identification
of a class (C ) that behaves in different ways depending upon the context in
which it is used. The Introduce Polymorphism rule requires that the designer
identify the contexts where alternate behaviours are expected, and divide the
references between A1, . . . ,An accordingly. Since the collection of class aliases
A1, . . . ,An are together disjoint, any introduced references to these classes must
be proved to be invariantly unequal whenever the references are to different
aliases. This can be proved as a data refinement.



176 T. McComb and G. Smith

C [P1, . . . ,Pm ]

F

[P1, . . . ,Pm ]

A1[P1, . . . ,Pm ] : PC [P1, . . . ,Pm ]
...

An [P1, . . . ,Pm ] : P C [P1, . . . ,Pm ]

〈A1[P1, . . . ,Pm ], . . . ,An [P1, . . . ,Pm ]〉
partitions

C [P1, . . . ,Pm ]

≡

A1[P1, . . . ,Pm ]

F

...

An [P1, . . . ,Pm ]

F

[P1, . . . ,Pm ]

C [P1, . . . ,Pm ] ==

A1[P1, . . . ,Pm ] ∪
. . . ∪ An [P1, . . . ,Pm ]

Fig. 3. Introduce polymorphism refactoring

Assuming this identification and partitioning of object references has oc-
curred, the Introduce Polymorphism rule allows for the splitting of the be-
haviours into separate class definitions (A1 to An on the right-hand side of Fig-
ure 3). To execute the refactoring transformation, all of the features of class C
are copied verbatim to define the classes A1 to An . The class C is removed from
the specification, but C is globally defined to be the class union A1 ∪ . . . ∪ An
— thus providing for the polymorphism. The identical feature sets of the classes
are represented with the symbol F in Figure 3.

Since C is defined as a class union after the application of the transforma-
tion, C cannot be inherited by any other classes in the specification after this
refactoring is applied (this is a restriction of the Object-Z language [14]). Such
classes must inherit one of A1, . . . ,An instead.

There is an axiomatic definition on the left-hand side that describes the typing
relationships between A1, . . . ,An and C . The designer must add this to the spec-
ification as a precondition to applying the rule. The axiomatic definition is not
only important to declare the meaning of A1, . . . ,An (i.e., that they are aliases for
class C ) but if the rule is applied in reverse (to coalesce two or more classes), this
axiomatic definition retains the vital information that relates the types.

There does not need to be any distinction between the behaviours of the
aliases A1, . . . ,An , but without it this would render the application of the rule
largely redundant. When there is a distinction, it is expected that the different
behaviours are explicitly guarded. For example, the designer may wish for an
operation Op in C to behave in two different ways captured by the operation
schemas α and β, depending upon its context. The identification of these contexts
is achieved by instantiating C as A1 or A2 respectively. The designer then guards
these behaviours through the use of the choice operator [] and the self keyword
inside the operation: using Op =̂ ([self ∈ A1] ∧ α) [] ([self ∈ A2] ∧ β), ensuring
that the introduction of the guards does not affect the behavioural interpretation
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of the specification (e.g., whenever a reference to A1 is introduced, α would have
always been the behaviour of Op prior to the application of the rule).

Although the class definition is copied, the use of these guards becomes crucial
after the application of the refactoring. The designer can substantially simplify
the class definitions A1, . . . ,An by realising that in class A1 (from the example
above), [self ∈ A1] ≡ [true] and [self ∈ A2] ≡ [false]; and likewise in class A2,
[self ∈ A2] ≡ [true] and [self ∈ A1] ≡ [false]. Therefore, in class A1, Op simplifies
to α. Similarly, in class A2, Op simplifies to β.

It is particularly important to realise that for instances a : A1; b : A2, it is
never the case that a = b because the references are disjoint (A1 ∩ A2 = ∅). If
A1 and A2 objects need to reside in a common data structure, for example a set
declaration using the class union A1 ∪ A2, then references to C may be used.

The labels A1, . . . ,An and C are representative only: the rule requires that
A1, . . . ,An are fresh names, and generic parameters are carried across (C [X ],
for example, becomes A1[X ], . . . ,An [X ]). A proof of soundness of the rule is
presented in [10].

4.1 Example

The Introduce Polymorphism rule tends to act as a bridge for applying more
interesting refactorings: it is best utilised in combination with the other rules
and interesting class refinements. So to provide an example for the Introduce

Polymorphism refactoring, we are going to progress towards deriving a class
RepStack [X ] which inherits Stack [X ]. The class RepStack [X ] will define a re-
porting stack, where more helpful information is provided in the status ! output
of the Push operation. This requires inheritance, for which a rule will be pro-
vided in the Section 5, so we will only make progress toward the final goal at
this stage (the example will be completed at the end of the Section 5).

We begin our example where the Introduce Generic Parameter rule
ended, with the System class and a parameterised Stack [X ] class (refer to Sec-
tion 3.1). In order to satisfy the prerequisite for the rule (being applied in the
forward direction), we must introduce some new (generic) class aliases into the
specification. As the new identifiers are fresh, this cannot affect the meaning of
the specification.

[X ]
RegularStack [X ],RepStack [X ] : P Stack [X ]

〈RegularStack [X ],RepStack [X ]〉partitionsStack [X ]

Although we have now satisfied the precondition for applying the rule to the
Stack [X ] class, now is a good time to perform a refinement upon the System
class to reference RepStack [X ] rather than Stack [X ]. This refinement is correct,
as RepStack [X ] is an alias for Stack [X ] (and therefore has the same meaning),
so we omit a detailed argument as to its correctness and just present the result
of the refinement:
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System
�(Push,Pop, INIT )

s : RepStack [N]
INIT
s .INIT

Push =̂ s .Push
Pop =̂ s .Pop

The reason we have chosen to perform the refinement at this stage is because
it is easier to justify (as RepStack [X ] is behaviourally equivalent to Stack [X ]),
and we know that we wish to have System reference RepStack [X ] at the end of
the refactoring process.

We now apply the Introduce Polymorphism rule to the Stack [X ] class.
The yields two class paragraph definitions RegularStack [X ] and RepStack [X ]
which exactly match (apart from the class name) the definition of Stack [X ]
prior to the rule being applied. The definition of Stack [X ], in turn, becomes:

[X ]
Stack [X ] == RegularStack [X ] ∪ RepStack [X ]

Our intention is to have RepStack [X ] inherit RegularStack [X ], which will
become possible with the Introduce Inheritance refactoring rule presented
in Section 5.

5 Introduce Inheritance

Reuse of data constructs and operations in classes is achieved through inheritance
in the object-oriented paradigm (both with programming and specification). The
Introduce Inheritance rule offers a means by which to build an inheritance
hierarchy from existing classes.

The Introduce Inheritance rule creates an inheritance relationship between
any two classes in the specification, as long as the addition of the relationship does

A
F

B
G

≡

A
F

B
A[H/F ]

G

where H are fresh

Fig. 4. Introduce inheritance refactoring
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not result in a circular dependency. Figure 4 illustrates the application of the rule
to two classes A and B with features F and G respectively.

The rule is most effectively applied to link together classes that contain com-
mon features in order to maximise the potential for reuse, but the classes need
not share any features at all. This is because the Introduce Inheritance rule
not only adds the inheritance relationship (indicated in Figure 4 by the inclusion
of A in B) but also hides every feature of the superclass by assigning them a
fresh name (the notation ‘H/F ’ indicates that all features F of the superclass
A are hidden by assigning fresh names H for the features). The combination of
inheritance and hiding makes the refactoring rule an equivalence transformation,
so long as we assume that the inheritance-based polymorphism operator ↓ is not
used in the specification. ↓C is an abbreviation for the class union of C with
all of its subclasses. All occurences of ↓ in the specification must be replaced to
specifically enumerate the inheritance hierarchy as a class union (that is, the ↓
must be replaced by its definition).

Some classes have an implicit visibility-list, whereby it is understood that
every feature of the class is externally visible [14]. In such circumstances, the
rule is still equivalence preserving as the interface of B is only widened, and the
fresh features cannot possibly have been referenced as they did not previously
exist.

To use the features inherited from the superclass, the designer must make
refinements local to the subclass to reference the features in H. Note that the
introduced reference to the superclass must parameterise the superclass if it has
generic parameters. These parameter instantiations of the superclass reference
may include formal parameters of the subclass.

The reversal of the Introduce Inheritance rule removes the inheritance
relationship under the condition that every feature of the superclass concerned
is not referenced (“fresh”). As inheritance in Object-Z is syntax-based [14], this
precondition can be satisfied by copying any referenced feature definitions from
the superclass into the subclass. A soundness proof for the rule is presented
in [10].

5.1 Example

The example of the previous section (4.1) was left unfinished owing to the absence
of the Introduce Inheritance rule described above; we are now in a position
to complete it.

The two classes, RegularStack [X ] and RepStack [X ], are identical. We wish
to break this symmetry, however, by encapsulating the general stack behaviour
in the RegularStack [X ] class and extending that behaviour in the RepStack [X ]
class via inheritance. The refactoring rule can be applied immediately to the
specification at the end of Section 4.1 to yield an altered definition for
RepStack [X ]:
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RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ][SuperL/L,SuperLIMIT/LIMIT ,SuperPush/Push,

SuperPop/Pop,SuperItems/items ,SuperInit/INIT ]
L == X

LIMIT : N

LIMIT = 1024

items : seqL

#items ≤ LIMIT

INIT
items = 〈 〉

Push
Δ(items)
item? : L
status ! : Z

#items < LIMIT ⇒ status ! >= 0 ∧ items ′ = 〈item?〉 � items
#items ≥ LIMIT ⇒ status ! < 0 ∧ items ′ = items

Pop =̂ [Δ(items) item! : L | items = 〈item!〉 � items ′ ]

RepStack [X ] is then capable of being refined to utilise the definitions inherited
by RegularStack [X ]. As the features are identical, the refinement step is trivial:

RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ]

The desired definition of RepStack [X ] can be derived through refinement from
the above definition, by strengthening the postcondition of the Push operation
(by reducing non-determinism over the output variable status !).

RepStack [X ]
�(Push,Pop, INIT )
RegularStack [X ]

Push
#items < LIMIT ⇒ status ! = #items ′

#items ≥ LIMIT ⇒ status ! = −LIMIT

6 Completeness

In the previous sections we introduced three rules for structural refactoring of
Object-Z specifications: Introduce Generic Parameter, Introduce In-

heritance and Introduce Polymorphism. In [9], McComb also introduced
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Annealing, which partitions a class state by introducing an instance to a fresh
class definition. These four rules are minimal in the sense that they each operate
upon one of the four orthogonal aspects of the object-oriented paradigm: no rule
(or sequence of rules) can perform the function of any other rule.

We present an argument that the combination of these four rules with com-
positional class refinement [12] yields a complete method for design in Object-Z.
That is, we demonstrate that it is possible to move from any structural design in
Object-Z to any other design that represents a valid refinement of the original.
However, we rely on some assumptions which we believe to be reasonable con-
cerning the “system” class, i.e., the class describing the whole system (System
in the example). First, we assume that the system class is not parameterised.
In specifications where parameters exist over the system class, we expect these
parameters to be instead expressed as given types in the specification. We also
assume that the system class does not directly expose state variables via its
visibility-list (although other classes may do this). This is because we cannot
reason about the use of such variables, as the context of the system class is un-
known, and this constrains possibilities for compositional class refinement. We
expect accessor operations to be utilised in these circumstances.

Recall that each of the rules is an equivalence transformation that acts on
the structure of a specification. We take advantage of this to demonstrate com-
pleteness by applying a commuting argument based on reduction. The reduction
argument is as follows: if a sequence of rule applications exists that can reduce
any arbitrary structure down to a canonical form, then it follows that the original
structure can be constructed from that canonical form by the reverse application
of the rules. By a commuting argument it follows that if a refinement ordering ex-
ists over the reduced form, then this ordering exists over arbitrary specifications,
as all specifications are reducible to this form. Consequently, from any specifi-
cation structure it is possible to construct another specification, with different
structure, that is a valid refinement.

Figure 5 illustrates this schematically. A designer wishing to refactor a spec-
ification (System,C1, . . . ,Cn) to a specification (System ′,D1, . . . ,Dm) that is
a refinement of or equivalent to (System,C1, . . . ,Cn) may do so by reducing
(System,C1, . . . ,Cn) to two classes (System,Delegate) (our reduced form); refin-
ing System and/or Delegate to derive (System ′,Delegate ′); and then constructing
(System ′,D1, . . . ,Dm) from (System ′,Delegate ′).

We progress in five stages. The first stage applies an equivalence preserving
refinement step to all classes that inherit features of other classes. This allows us

(System,C1, . . . ,Cn)
≡

> (System,Delegate)

(System ′,D1, . . . ,Dm)

�
∨

<
≡

(System ′,Delegate ′)

�
∨

Fig. 5. Commuting argument for design reduction and construction with refinement
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to establish the precondition for applying the Introduce Inheritance rule in
reverse. Through this process we effectively remove all inheritance relationships
in the specification. The second stage introduces a Delegate class that is key to
our reduced form. The third stage applies the Introduce Generic Parame-

ter rule in reverse. The precondition for applying this rule reversal is satisfied
by forward applications of the Introduce Polymorphism rule. Through this
process we show that all generic parameterisation can be removed from the spec-
ification. In the fourth stage, we apply the Introduce Polymorphism rule in
reverse to collapse the entire specification (except for the System class) into the
Delegate class. Again, we use equivalence preserving class refinements to satisfy
the preconditions for applying this rule backwards. The last stage presents the
argument that System and Delegate can be compositionally decoupled [12], and
all possible specification refinements can be expressed as class refinements over
these classes.

We refer to these stages respectively as: inheritance hierarchy flattening, inter-
face isolation, parameterisation reduction, class paragraph definition reduction,
and specification refinement. Below we expand on these stages to provide a high-
level completeness argument; a formal proof can be found in [10].

1. Inheritance hierarchy flattening
(a) Through equivalence preserving class refinements, references to features

of superclasses can be removed.
(b) Given subclasses do not reference features of their superclasses, the pre-

condition for applying Introduce Inheritance in reverse is satisfied
for all inheritance relationships.

(c) Repeated reverse application of Introduce Inheritance removes all
inheritance relationships.

2. Interface isolation
(a) Since there are no inheritance relationships and the system class has

no parameters, a fresh class definition Delegate1 can be created via ap-
plication of the Annealing rule on the system class [9]. Annealing

partitions the state of a class into two parts: S and T , where T is the
part that is moved into the newly created component class. In this case,
the system class state is partitioned such that T represents the entirety
of the state. That is, the entire state of the system class is moved to the
new component class Delegate1.

3. Parameterisation reduction (only necessary if classes with generic parameters
exist)
(a) For an arbitrary class definition that has generic parameters, all concrete

types used to instantiate a parameter of that class can be enumerated.
(b) For some class C [P1, . . . ,Pn ] with a generic parameter Pi (1 ≤ i ≤ n),

an equivalence step can introduce a set of alias class names AliasT1
[P1, . . . ,Pn ], . . . , AliasTm [P1, . . . ,Pn ] (axiomatically defined): one mem-
ber for each different concrete type T1, . . . ,Tm used to instantiate Pi .

(c) Since there are no inheritance relationships, the precondition for Intro-

duce Polymorphism is satisfied for any class C and the alias classes
AliasT1[P1, . . . ,Pn ], . . . , AliasTm [P1, . . . ,Pn ] from the previous step.
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(d) Application of Introduce Polymorphism to each class C and its
aliases establishes, in each case, the precondition for the reverse ap-
plication of Introduce Generic Parameter to each alias class for
the chosen parameter Pi . An equivalence preserving data refinement to
introduce a local definition of the form L == X may be necessary.

(e) Reverse application of Introduce Generic Parameter to all alias
classes strictly reduces the number of generic parameters (by exactly 1).

(f) Repeating steps 3(a) through 3(e) removes all generic parameterisation
for all classes, given that the system class is not parameterised.

4. Class paragraph definition reduction
(a) Let n ← 1.
(b) For any class definition C where C is not the system class or Delegaten ,

both C and Delegaten can undergo an equivalence preserving class re-
finement such that each definition has identical features.

(c) The precondition for the reverse application of Introduce Polymor-

phism is satisfied for a fresh class Delegaten+1, which is defined to be
the class union of C and Delegaten .

(d) Reverse application of Introduce Polymorphism to C and Delegaten
yields a strict reduction in the number of classes.

(e) Let n ← n + 1.
(f) Repeating steps 4(b) through 4(e) eventually yields the reduced form,

i.e., the only classes are the system class and Delegaten .
5. Specification refinement

(a) The Delegaten class can be compositionally decoupled from the system
class, such that both may be refined, assuming the system class does not
expose state variables in its interface [12]. Refinements to the system
class and Delegaten constitute all possible specification refinements.

7 Conclusion

We have emphasised the completeness of the approach for manipulation of archi-
tectural structure (that is, high-level design), in an object-oriented sense. Unless
a light-weight approach is employed, whereby individual class specifications —
having undergone sufficient data refinement — are implemented (and tested)
informally, there is also potential for future work in providing a rigorous method
for implementing specifications of individual classes in an object-oriented pro-
gramming language. As Object-Z is not wide-spectrum, this would require an
extension to the language, or a mapping of our method to another object-oriented
specification language that supports low-level programming constructs.

In ongoing work, Ruhroth et al. are investigating refactoring transformations
of Object-Z specifications in the presence of CSP [13], particularly with respect
to those refactoring transformations we refer to as non-structural. Other work
by Estler et al. incorporates model-checking technologies for the verification of
refactorings in Object-Z without CSP [4]. The automation of such verifications
are important for the practicality and relevance of our approach to current soft-
ware engineering practice, and can hopefully be extended to our structural rules.
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Abstract. The complexity of middleware leads to complex Application
Programming Interfaces (APIs) and semantics, supported by configurable
components in the middleware. Those components are selected to provide
the desired semantics. Yet, incorrect configuration can lead to faulty mid-
dleware executions, detected late in the development cycle.

We use formals methods to tackle this problem. They allow us to find
appropriate composition of middleware components and the use of their
APIs, and to detect valid or faulty sequences. To provide reusable results,
we modeled a canonical middleware architecture using Z.

We propose a validation scenario to verify middleware’s invariants.
We define invariants to exhibit inconsistent usage of these APIs. The
specification has been checked with the Z/EVES [13] theorem prover.

1 Introduction

Middleware is now a central piece of many applications. Therefore, expectations
about middleware reliability increase. To meet this goal, their architecture is
being revisited, cleaned to exhibit structuring patterns. For example, TAO [12]
or Zen [10] take advantage of Design Patterns to provide a safer design. Based
on this architecture, the middleware can be tuned to operate dedicated policies
(tasking management, memory allocation, etc.).

Yet, these complex assemblies of design patterns has never been formally
proved in an easy and efficient way. Thus, components interactions may lead to
faulty configurations lately detected. A way to tackle this problem is to define
and check invariants [5]. This is a way to express stability conditions on software
components. For example, one can use OCL [9] to declare such invariants.

Should the middleware architecture be formally specified and its invariants
formally expressed, one can define use case scenarios to verify the system. We
aim to model middleware’s components to ensure their composition. We specify
invariants (e.g. array size of some internal structures, unicity of identifiers) for
each component and check if they are verified for the selected assembly.
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Z [13] is an algebraic specification language, based on the mathematical typed
set theory. It has a schema notation, which allow one to specify structures in
the system. It relies on a decidable type system, allowing one to automatically
perform well-formedness checking (e.g. interface matching, resource usage).

In this paper we use Z to specify middleware services. We compose them as
a middleware developer or user would do. Then we formally prove that query
identifiers are consistent.

Section 2 sketches the use of formal methods for middleware. Then Section
3 presents the canonical middleware we selected. Section 4 details its modeling
with Z, and section 5 shows how we prove important properties on the system.

2 Applying Formal Methods to Middleware

Middleware provides a set of mechanisms to support distribution functions. Its
typical architecture is made of components, each of which supports a particular
step in the processing of interactions. Interactions are supported by the exchange
of messages between a client and a server, representing the caller and the callee.

Middleware’s architecture is a set of components supporting the different steps
of this interaction. The use of components (and their variations, implementing
different configurations or policies) allows developers to tune or to select con-
figurations/policies to configure and deploy a middleware that meet applica-
tion requirements. A middleware configuration is defined as a set of components
implementation selected to fulfill requirements.

So far, middleware are described through their components and the service
they implement. Components are often described with semi-formal notation such
as UML. These notations allow to express invariants (e.g. OCL in UML).

However, very few middleware specification is based on formal methods. This
is a problem because formal specification of components and their related proper-
ties is needed to formally ensure that invariants are still valid for a given config-
uration (e.g. the selected implementation of components respect the middleware
invariants).

Related Works. There are two main approaches using formal methods in such
context: dynamic and static.

Dynamic Verification deals with the system’s behavior. It is the enumeration
and analysis of all the states the system can reach during its execution. It is
of interest to check if the system is deadlock or livelock free (model-checking).
For example, in [11], LOTOS is used to build a formal framework to specify a
middleware behavior based on its architecture [2]. Petri Nets [14] are also used
to verify that PolyORB’s core is both livelock and deadlock free [6].

Static Verification deals with structural aspects of a system and relies on pred-
icate logic [5]. It is appropriate to analyse systems architectures, such as compo-
sition of interfaces from a typing theory point of view. It is also useful to check
that invariants defined in the specification remains when components are com-
posed. For example, in [1] the Z algebraic notation is used to verify the CORBA
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[4] object model: this study exhibits inconsistencies in the OMG CORBA Secu-
rity Services. Similar work has been achieved on the CORBA Naming Service
[7] or on parts of the POSIX real-time standard [3]. They both characterize po-
tential problems in the use of components (such as logical naming or messages
typing). Z is also used in [8] to specify the architecture of a cognitive application
for redesign.

However there is no approach that really deals with middleware architecture
issues. They only describe high-level services or behavior.

Our Approach. We first analyse the architecture of a middleware to find rele-
vant abstractions of the system. We also specify properties: 1) inside components,
2) at components interfaces, and 3) at the composition level.

The chosen architecture (presented in Section 3) is modular and versatile. It
provides de facto a set of interesting abstractions for formal description. This
work is complementary to the state of the art because we focus on the verification
of properties for a given components assembly.

In an idealistic middleware development process, architecture verification ap-
pears after static verification (that deals with service specification) and before
the dynamic verification (that ensures behavior of the system). It aims at build-
ing a middleware correct by construction. For example, we want to ensure that
a configuration (i.e. a specific instantiation of selected components expressed by
their formal specification) will not lead to a non-functionnal middleware (for
instance one that cannot process requests).

3 Middleware Architectures

New architectures based on design patterns and genericity ease middleware
adaptation by enhancing their configurability capabilities[12][10]. However their
development process is not clearly specified and remains complex because it
requires the implementation of most of the middleware functions.

We present in this section the characteristics of a specific middleware archi-
tecture we chose for our study.

The Schizophrenic architecture [15] is based on a Neutral Core Middleware
(NCM), on which we can plug application-level and protocol-level personalities.

The Neutral Core Middleware (NCM) provides a set of canonical services on
which we can build higher level services. The former are generic components
for which a general implementation is provided. They are sufficient to describe
various distribution models.

Application personalities are the adaptation layer between application compo-
nents and middleware through a dedicated API or code generator. They register
application components within the NCM; they interact with it to enable the
exchange of requests between entities at the application-level.
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Protocol personalities handle the mapping of personality-neutral requests
(representing interactions between application entities) onto messages transmit-
ted through a communication channel.

We chose the Schizophrenic architecture because the core of the middleware
fits to formally specify services and invariants in the system: main services are
grouped in this core, easing the formal analysis of the middleware.

PolyORB implements a schizophrenic architecture presented in [15]. It demon-
strates the concept is sound: it implements multiple personalities like CORBA,
GIOP, Distributed Systems Annex of Ada, a Message Oriented Middleware de-
rived from Java’s JMS and SOAP. From the NCM, we identify seven steps in
the processing of a request, each of which is defined as a fundamental service.
Their associated level is the middleware is depicted in Figure 1.

We present these fundamental services and their specific roles: first, the client
looks up server’s reference using the addressing service (a). Then, it uses the
binding factory (b) to establish a connection with the server, using one commu-
nication channels (e.g. sockets, protocol stack). Request parameters are mapped
onto a representation suitable for transmission over network, using the repre-
sentation service (c) (e.g. CORBA CDR). A protocol (d) is implemented for
transmissions between the client and the server nodes, through the transport (e)
service; it establishes a communication channel between the two nodes. Then the
request is sent through the network and unmarshalled by the server. Upon the
reception of a request, the middleware instance ensures that a concrete entity
is available to execute the request, using the activation service (f). Finally, the
execution service (g) assigns execution resources to process the request.

Figure 1 also depicts the standard interaction between these fundamental
services. It presents two hosts, each having the same underlying middleware:
PolyORB. We present the main interactions between services from the export
of a service from the server, to the sending of a request from the client. The
object “Se” is called a Servant (from server side) or a Surrogate (object “Su”
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Fig. 1. Inside a schizophrenic middleware: PolyORB
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from client side). It belongs to the Binding service and is, for the client, the local
interface of the remote service.

This object is created (1) when an object Object, which belongs to an applica-
tion personnality, wants to provide a service. It is registered in a map managed
by an Object Adapter (OA), which is associated to an Object Request Broker
(ORB). In order to share this service, a Reference R is built (2) and shared (3)
to the system. A Reference contains information to locate and identify a service
in the network. When a client object wants to invoke this service, the client ORB
should get the specific reference (4) and extract from it a Surrogate, managed
by the client OA. Then, a Request is built (5) from this Reference, and send
through the local Endpoint managed by the client ORB. It uses protocol chosen
from the Reference. This protocol belongs to a protocol personnality. The Re-
quest is received (6) through an Access Point, managed by the server ORB. The
Request is then analysed (7): if it is valid, the Activation service is involved (8),
using the OA, to select the local object which provides the service. Finally, the
Execution service allocates needed resources.

4 Modeling Middleware with Z

We present the modeling in Z of the Neutral Core Middleware and related ser-
vices, as presented in the previous section.1

The System. Several ORBs run into an heterogeneous system. At the specifi-
cation level, the system is a collection of ORBs. Each ORB has to have unique
name in this system. Furthermore, References on available services are shared
through the system. The following Z schema specifies this system:

ORB System
orbs : FORB
ref repository : PReference Info

#orbs ≤ 1 ⇒
(∀ o1, o2 : ORB

| o1 �= o2 ∧ {o1, o2} ⊆ orbs
• o1.ORB TSAP �= o2.ORB TSAP)

A Z schema is divided into two parts (with an horizontal line as separator): the
first one presents attributes names and type of a schema. The second presents
invariants on these attributes. Schemas are a modular way to realize a specifi-
cation, allowing one to split into small parts a system, and to compose them.

The invariant of the ORB System schema states that if there is more than
one ORB in the system, they must have different names (ORB TSAP, see the
definition of the ORB schema below).
1 An extended version of this work is available at http://pagesperso-systeme.lip6.
fr/Xavier.Renault/pub/research/techreport/ZPolyORB 08.pdf

http://pagesperso-systeme.lip6.fr/Xavier.Renault/pub/research/techreport/ZPolyORB_08.pdf
http://pagesperso-systeme.lip6.fr/Xavier.Renault/pub/research/techreport/ZPolyORB_08.pdf
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The orbs set is theoretically infinite, but to specify the invariant related to
names (which involves the cardinality), it is finite (F symbol). The ref repository
attribute is a infinite set of References. Each reference is unique.

Neutral Core Middleware Components. We present the main components
of the NCM: the ORB and its associated Object Adapter.

The ORB manages several resources in the system: resources allocation, task
scheduling, event priorities and request handlers. On one side, the ORB has
to serve requests to applications entities, using an “Object Adapter”. On the
other side, it has to send and receive requests from other nodes, through Trans-
port Access Points (TAP). Each TAP is bound to a specific protocol. Further-
more, the ORB is uniquely identified over the network. Hence the following Z
schema:

ORB
ORB TSAP : TSAPType
Request Queue : seq Request
Transport Access Points : Transport Access Point �→ ProtocolStack
RootPOA : Object Adapter

The ORB TSAP attribute is the network identifier of each ORB.
Each ORB has a request queue, which is in our specification a sequence of

Request. This allow us to keep the order of incoming requests, since it is an
intrinsic properties of sequences in the Z notation.

The Transport Access Points attribute is the set of TAPs, each bounded to a
specific ProtocolStack. It is a partial function of TAPs to ProtocolStack.

The Object Adapter (the RootPOA attribute) manages all objects which ex-
port services (named Servant), provided by the application. These servants have
a unique identifier on their host. The Object Adapter (OA) manages the map-
ping between these servants and their identifiers. It affects a unique identifier to
each registered servant:

Object Adapter
Objects Map : ServantType → Ident

∀ s : domObjects Map
• Objects Map(s) �= NULLId

In this Object Adapter schema, Objects Map models the binding between
some servant to a unique identifiant. This is a total function between sets Ser-
vantType and Ident (symbolized by →).

The invariant part of this schema states that it is not allowed to have entries
in the map which have a NULLId (which means the Servant may not have been
initialized for example).
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A Reference is used to identify an application entity within the global system,
as CORBA’s IOR. It is a finite collection of Profiles. A profile carries the identifier
of the target host in the system, and the identifier of the service within this host.
It defines available protocols to contact the remote target, it is a subset of the
protocols managed by both the client and the server.

Reference Info
Profiles : F(Profile)

NULLRefSet : PReference Info

NULLRefSet =
{r : Reference Info

| r .Profiles = ∅}

Profile
TSAPName : TSAPType
ObjectId : Ident
Continuation : ProtocolStack

ObjectId �= NULLId

NULLProfileSet : PProfile

NULLProfileSet =
{p : Profile |
p.TSAPName = NULLTSAP ∨
p.Continuation = NULLPStack}

A Profile could not be bound to a servant whose identifiant is NULL. For
specification purpose, we define the set of all null references (which have an
empty set of Profiles) and the set of null profiles.

A Reference is built by a server host: a client has read-only access to this kind
of resource: by construction, a Reference refers only to one service, and lists the
different ways to reach it.

Neutral Core Middleware Services. To provide services as described in
Section 3, different functions have to be defined in the middleware internals.
We present them in the following order: first, from the server side, we define
operations to share a service in the system; second, the functions used by a
client to get information and send a request to the remote server; third, we
present functions used by the server host to handle an incoming request.

From a server application, there are three mains steps to share and provide
services in the network:

– The middleware exports the servant (Export procedure);
– The middleware produces a reference for this servant (Create Reference);
– The middleware notifies other nodes about the availability of the service to
the system, using a naming service for example.

Exporting a Service (Server Side). The Export procedure registers Ser-
vants in the Object Adapter (OA). This procedure should respect the fact that
Servants are not managed twice in the OA map. Given a Servant, it creates a
new entry in the map with an available identifier. This procedure fails if the
Servant is already managed by the OA.
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Export OK
ΔORB System
O? : ORB
Obj ? : ServantType
Oid ! : Ident

O? /∈ NULLORBSet
∧ O? ∈ orbs
∧ Obj ? �= NULLServant
∧ Obj ? /∈ domO?.RootPOA.Objects Map
Oid ! /∈ ran O?.RootPOA.Objects Map ∧ Oid ! �= NULLId

orbs ′ = (orbs \ {O?}) ∪ {θORB [
ORB TSAP := O?.ORB TSAP ,
RootPOA := θObject Adapter [

Objects Map := {Obj ? �→ Oid !} ⊕ O?.RootPOA.Objects Map],
Transport Access Points := O?.Transport Access Points,
Request Queue := O?.Request Queue]}

The Δ symbol indicates that Export OK changes the state of ORB System.
Modified attributes of ORB System are decorated with a single quote, as orbs’.

A Z schema can also be parametrized: input variables are decorated with a ’?’
symbol; output variables are decorated with the ’ !’ symbol.

The θ symbol indicate an instantiation of a Z schema with specific values,
affected by the ’:=’ symbol. Here, the Export OK operator removes the input
ORB variable from the system and inserts a new one with modified attributes.
The intrinsic type of a total function X → Y is a set of pairs P(X × Y ). The
⊕ symbol adds a pair (x , y) into the set if there is no already existing pair as
(x , z ). In the later case, it overrides the old pair.

Notice the name of the presented operator ends with the “ OK” suffix. In
order to avoid undefined predicates in the specification, each operator schema
is divided into two schemas: one specifying preconditions to a successfull appli-
cation of the operator (name ending with “ OK”), and the other specifying the
dual preconditions of the first schema (name ending with “ ERR”). The final
operator is build as a combination of these two schemas, and is then called ro-
bust. All operators in our specification are robust, but for sake of clarity we only
present the “ OK” part of each of them.

Creating a Reference (Server Side). As previously defined, a Reference
contains all information to contact and identify a service in the system. It carries
information on the different protocols available to contact the remote node.
These protocol are bound to a particular Transport Access Point. To create a
reference, we need to build all information for each TAP. We need to set the
local identifier of the service, and the global identifier of the host in the system.
Figure 4 presents the related operator schema.

Since PSet!.Profiles is a set of profile, we can use the Z notation to build a set
comprehension: the pattern is {x : T | C • P}, where x is of type T. For each
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Create Reference OK
O? : ORB
Oid? : Ident
PSet ! : Reference Info

O? /∈ NULLORBSet
Oid? �= NULLId
∧ Oid? ∈ ran O?.RootPOA.Objects Map
PSet !.Profiles = {

TAP : domO?.Transport Access Points
• θProfile[

TSAPName := O?.ORB TSAP ,
ObjectId := Oid?,
Continuation := O?.Transport Access Points(TAP)]}

Fig. 2. The Create Reference operator

x under the condition C, then the predicate P holds. Here, a Profile set is built
as follow: for each TAP in the input ORB’s TAP, an instantiation of a Profile
schema is made with specific value.

This operator fails if no Servant is bound to the input local identifier.

Sharing a Service (Server Side). Sharing a service is to notify the system
that a new service is available.

Broadcast Reference Ok adds the input reference to the system’s references
repository. Each ORB in the system may then access to this repository to retrieve
specific references.

Broadcast Reference OK
ΔORB System
PSet? : Reference Info

ref repository ′ = ref repository ∪ {PSet?}

Sending a Request (Client Side). We present operations that a client has
to do in order to send a request to a remote server. The client should 1) get a
Reference on the targeted service; 2) build the Request; 3) select the appropriate
Profile and associated Protocol; 4) send its request to the remote host.

The Reference may be get using the reference repository, or with alternative
mecanisms such as IORs.

The Request is the structure containing information to invoke the remote service.
It is sent through the network, and carries a Reference on the targeted server
object and the identifier for this server service.
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It is a simplified view of a request, which may contain more parameters and
additional QoS information.

Request
Target : Reference Info
Operation : OperationIDType

Create Request OK
Target? : Reference Info
Operation? : OperationIDType
Req ! : Request

Req ! = θRequest [
Target := Target?,
Operation := Operation?]

The Create Request OK operator acts as a request factory: given a reference
and a service identifiant, it builds the appropriate request.

Request Send operation first selects the appropriate profile (and the associated
protocol) to contact the remote host; then it sends this request using the selected
profile, adding the request to the targeted ORB queue. The send operator fails
if the Request is malformed.

Send Request OK
ΔORB System
Req? : Request
P? : Profile

Req? /∈ NULLReqSet
∃ var : ORB
| var ∈ orbs
∧ var .ORB TSAP = P?.TSAPName
• orbs ′ = (orbs \ {var}) ∪ {θORB [
ORB TSAP := var .ORB TSAP ,
RootPOA := var .RootPOA,
Transport Access Points :=

var .Transport Access Points,
Request Queue :=

var .Request Queue � 〈Req?〉]}

Select Profile OK
Req? : Request
P ! : Profile

Req? /∈ NULLReqSet
Req?.Target .Profiles �= ∅
∃ p : Profile

| p ∈ Req?.Target .Profiles
• P ! = p

The Select Profile OK operator specifies a simple selection algorithm: it ran-
domly picks one Profile among available ones.

In the Send Request OK operator, an incoming request is added to the tar-
geted ORB queue (using sequence concatenation operator �).

Receive and Process Requests (Server Side). When receiving a request,
the ORB checks, using the Activation service, that the request is valid and the
targeted object is managed by its Object Adapter. Then, the Execution Service
allocates resources for request execution.
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Process OK
ΔORB System
O? : ORB
FOid ! : Ident
var : Request

O? /∈ NULLORBSet
∧ O? ∈ orbs
∧ O?.Request Queue �= 〈 〉
var = head O?.Request Queue
∃ p : Profile

| p ∈ var .Target .Profiles
∧ p.ObjectId ∈ ran O?.RootPOA.Objects Map
• FOid ! = p.ObjectId

orbs ′ = (orbs \ {O?}) ∪ {θORB [
ORB TSAP := O?.ORB TSAP ,
RootPOA := O?.RootPOA,
Transport Access Points := O?.Transport Access Points,
Request Queue := tail O?.Request Queue]}

This operator dequeues an incoming request (using sequence operator like
“head” and “tail”, which respectively return the first element of a sequence and
all the sequence but the first one).

Find Servant OK
OA? : Object Adapter
id? : Ident
s! : ServantType

OA? /∈ NULLOASet
∧ id? �= NULLId
∧ id? ∈ ran OA?.Objects Map
∃ ss : ServantType

| ss ∈ domOA?.Objects Map
∧ OA?.Objects Map(ss) = id?
• s! = ss

Find Servant ERR
OA? : Object Adapter
id? : Ident
s! : ServantType
E ! : Exception

OA? ∈ NULLOASet
∨ id? = NULLId
∨ id? /∈ ran OA?.Objects Map
s! = NULLServant
E ! = FAILURE

The Find Servant operator checks if the input identifier is related to a managed
servant, and activates it. We have shown for the later operator the robust schema,
including its “ OK” and “ ERR” parts. We present the robust Find Servant
operator (a combination of the two prevous ones):

Find Servant =̂ (Find Servant OK ∧ Success) ∨ Find Servant ERR
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5 Verifying Invariants in the Middleware Specification

We have defined the main components of a middleware. For the sake of place,
this section presents only one system configuration, where only one client host
and one server host are set. We present their associated initialization schema and
then a scenario where the client host sends a oneway request to the server host.
Such a request is sent with the “best-effort” semantic, for which the client host
does not wait for any answer. In this scenario, we expose that some properties
hold in the system, ensuring its consistency.

Our specification is checked using the Z/EVES theorem prover. Z/EVES is
an interactive system for composing and analysing Z specifications. It helps the
modeler to prove theorems on the specification, but for complex specification
it only provides guidelines for proving: the modeler has to finish the proof and
guide Z/EVES to get a “true” or “false” result.

System Instantiation. Both the client and the server hosts have an ORB. We
present the initialization of one ORB, the server one. Since it is a transaction
oriented architecture, server and client are identified only when one sends a
request to the other. We introduce the global identifier of an ORB:

SHost : TSAPType

The definition of an Object Adapter sets initially its map to an empty set (no
servant managed).

S OA : Object Adapter

S OA.Objects Map = ∅

We define, for this case study, only one Transport Access Point and its associated
Protocol Stack for each ORB:

S TAP : Transport Access Point
S Protocol : ProtocolStack

We now instantiate an ORB, setting its name, Object Adapter, TAPs and Re-
quest Queue:

S ORB : ORB

S ORB = θORB [
ORB TSAP := SHost ,
Request Queue := 〈 〉,
RootPOA := S OA,
Transport Access Points := {S TAP �→ S Protocol}]

The previous initialization process holds for all hosts in the network. Once
these hosts are set, we can initialize the whole environment: initializing the set
of ORBs in the system and the references repository:
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InitEnvironment
ORB System ′

orbs ′ = {S ORB} ∪ {C ORB}
ref repository ′ = ∅

The system contains two running ORBs, with no request pending at the ini-
tialization time. Figure 5 introduces a Servant, named “Object”, which will be
managed by the server host for a transaction, and its associated service “Echo”:

Object : ServantType echo : OperationIDType

Fig. 3. Z model of a Servant providing the Echo Service

Validation Scenario and Associated Proofs. We present a use-case scenario
that corresponds to a typical activation of services. In this scenario, a server hosts
an object which provides a service. The server application registers the object
with its local middleware, creates a reference and shares it. A client host gets
this reference, builds a request, and sends it to the remote entity. Finally, the
server middleware handles the request.

As presented before, all operations that a server has to do in order to export a
service are sequentialized as follow in a new schema Server Op: it has to export
the Servant to the Object Adapter, to create a reference on this Servant and to
notify the system of the new service availability:

Server OP =̂
Export [O? := S ORB ,Obj ? := Object ]
>>Create Reference[O? := S ORB ]
>>Broadcast Reference OK

The >> symbol indicates operations are chained, where the output of one is the
input of the other. These operations must be robust, to avoid undefined state.

In order to emit a request to the server host, a client should extract the remote
object’s reference, create a request targeting this object, adding request payload
and select a profile to contact the remote host and finally send the request:

Client OP =̂
GetReference
>>Create Request [Target?, Operation? := echo]
>>Select Profile
>>Send Request

The GetReference schema is an operator defined in the scope of the case study.
It is defined as:
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GetReference
ΞORB System
Target ! : Reference Info

Target ! ∈ ref repository

This schema is pretty simple since in our case study there is only one reference
in the repository.

We restrict our case study to Oneway Request: for these later, the client does
not wait for an answer. In this scenario, the server exports a service, the client
sends a request, and the server checks this request before processing it.

ONEWAY =̂ InitEnvironment o
9 Server OP o

9 Client OP o
9 Process

The o
9 symbol expresses a call sequence of operators.

In our scenario, we want to ensure that the request sent by the client contains
the same id as the one exported by the server at the beginning.
To make this verification, we define the following test schema:

ONEWAYTest =̂ ONEWAY >>Find Servant [OA? := S ORB .RootPOA, Foid?/id?]

The Process operator is invoked with the id sent with the request, and it returns
the id of the activated object; we pipe it with the Find Servant operator to check
if it the same as Object . To verify this property, we express the theorem shown
in Figure 4

theorem tOneWayReliable
ONEWAYTest ⇒ s! = Object

〈... Z/EVES output ...〉
Proving gives ...
true

Fig. 4. Theorem: a Oneway Request is reliable

Analysis For sake of clarity and readability, we do not present the whole inter-
action with Z/EVES. To achieve this proof, we needed to prove intermediates
theorems, such as precondition reachability of each operators, schemas consis-
tency and domain checking. We needed to set rules to help Z/EVES to finish
the proof: typing related rules, transformation rules (predicate equivalence, etc.).
Each rule has been proved in order to be used.

This global proof ensures that for this call sequence, invariants specified within
each schema hold: names of ORBs are unique, no uninitialized objects are man-
aged by Object Adapters. Furthermore, preconditions for each operators are
reachable and allow to produce valid postconditions as specified. These postcon-
ditions are checked and ensure that this combination of operators will lead to
the seeked goal: identifiants consistency through a OneWay Request Process.
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6 Conclusion and Future Work

In this paper, we presented the use of Z as formal notation to specify the archi-
tecture of a canonical middleware, based on a schizophrenic middleware archi-
tecture. This allows us to build abstraction of the middleware components, and
to express properties and invariants upon each component of the system.

To elaborate the Z specification, we choose a well-structured architecture that
relies on a canonical middleware core that concentrate all important services.
Since these services are well-specified, it is possible to formally express them in
Z. Moreover the execution path of these services is also well-identified by use-case
scenarios that can serve as a basis for verification.

Once the canonical middleware core specified in Z, we have identified typical
invariants for each components. These invariants are used to ensure that a given
component configuration will not lead to inconsistencies in the middleware.

We experimented a well-identified use-case scenario on this architecture, and
show its validity. Doing so with all use-case, we proved that our canonical archi-
tecture is consistent by construction.

One can enrich this specification, and add new contraints and invariants both
deduced from a given implementation’s caracteristics. Thus, our Z specification
can serve as a framework to verify several variations based on our canonical
middleware core.

The next step of our work is to express more invariants for each components,
and to enrich the model with more details. We aim to analyse the impact of
various QoS strategies on the middleware invariants. These QoS strategies will
be expressed in Z to be bound to our current specification for analysis purpose.
Categories of cases study will be defined and improved.
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Abstract. Concurrent programming in object-oriented languages is a
notoriously difficult task. We propose coboxes – a novel language con-
cept which combines and generalizes active objects and techniques for
heap structuring. CoBoxes realize a data-centric approach that guaran-
tees mutual-exclusion for groups of objects. This is important for more
complex data structures with invariants ranging over several objects.
CoBoxes support multiple entry objects, several cooperating tasks in a
cobox, and nesting of coboxes for composition and internal parallelism.
Communication between coboxes is handled by asynchronous method
calls with futures, which is in particular suitable for distributed program-
ming. In this paper, we explain how aspects of concurrent programming
can be solved by coboxes. We develop a core language for coboxes and
present a formal operational semantics for this language.

1 Introduction

Today’s programming languages support concurrency mainly by multi-thread-
ing. Especially in object-oriented settings, multi-threaded programming is noto-
riously hard. The programmer has to control the shared state of threads which
is difficult in object-oriented programming because state sharing is a dynamic
property depending on the reference structure in the heap. Another problem for
thread safety is the fact that programming invariants often depend on several
objects. Thus, after violating an invariant by modifying some object X , a thread
needs to work on other objects to reestablish the invariant before another thread
can access X . As threads are based on preemptive scheduling and every thread
may be suspended at any time leading to an arbitrary interleaving of threads,
the programmer must explicitly prevent certain interleavings by using locking,
a fairly primitive and error-prone programming construct.

Whereas preemptive scheduling causes problems within a single process, it
is successful for processes on the operating system level. The reason is simple:
processes do not share state and communicate via message passing. However,
to substitute all method calls in OO programming by asynchronous message
passing would throw out the baby with the bath water. The state space of a
process would be restricted to a single object and the well-understood sequential
� Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

G. Barthe and F. de Boer (Eds.): FMOODS 2008, LNCS 5051, pp. 201–219, 2008.
c© IFIP International Federation for Information Processing 2008
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reasoning that can be used for thread-safe parts of programs with synchronous
method calls could no longer be applied.

In this paper, we present a model that tries to combine the best of two worlds.
It builds upon and integrates techniques for active objects [7] and for structuring
the heap into groups of objects, so-called boxes, which have only been presented
in a sequential setting [37] (sequential boxes). We call this symbiosis concurrent
boxes or coboxes. Like sequential boxes, coboxes hierarchically partition the heap
into runtime components consisting of multiple objects. To use coboxes, the
programmer simply has to declare certain classes as cobox classes. Instantiating
such a class creates a cobox together with its main object (also called owner
object). A cobox may have multiple tasks which are scheduled cooperatively
and where only one at a time may be active. Thus, within a cobox programs
are executed sequentially with programmer-defined points of suspension and
scheduling. CoBoxes run concurrently and communicate via message passing.
To support composition of boxes and a restricted form of internal concurrency,
coboxes can be nested, i.e. coboxes can contain other coboxes.

Contributions and Overview. This paper extends the sequential box concept that
we developed in [37] to concurrency. The novel concurrency model generalizes
active objects with asynchronous messages and futures to multiple object com-
ponents. The resulting concurrent programming model enables the programmer
to develop instantiable and composable components of scalable sizes. Although a
cobox may expose several objects to the environment the model guarantees that
tasks within a cobox are free of data-races and are executed atomically between
suspension points.

After a discussion of related work, we explain and illustrate our programming
model (Sect. 3). As central technical contribution, we present a formal small-step
operational semantics of a core language for concurrent boxes and investigate
some of its properties (Sect. 4). We conclude the paper after a discussion of the
current limitations of our approach as well as possible solutions (Sect. 5).

2 Related Work and Motivation

Heap Structuring. A heap in OOLs is an unstructured graph of objects.
The missing structure makes it difficult to reason about the behavior of object-
oriented programs. Different approaches have been proposed to handle this prob-
lem. Ownership Types [11, 6, 34] and variants [2, 36, 38] statically structure the
heap into ownership contexts. This can be used, for example, to ease program
verification [13, 35] or to statically guarantee data-race and deadlock freedom
in multi-threaded programs [5]. The concept of object ownership can also be
encoded in a programming logic to achieve data-race [30] and deadlock [31] free-
dom by program verification. In a previous work, we used hierarchical structur-
ing of the heap to modularly describe the behavior of sequential object-oriented
runtime components [37].

Actors. The actor [1, 33] or active object model [7] treats every object as
an actor. Actors run in parallel and communicate via asynchronous messages.
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To allow result values for asynchronous method calls, futures [33] are used. In
general, actors only have a single thread of control. This makes it difficult to
implement multiple interleaved control flows within an actor, as this has to
be explicitly implemented. This problem has been solved by Creol [32, 12], for
example, which supports multiple control flows in objects. Another problem
is the flat object model of actors. In general, actors cannot have a complex
aggregate state. Some approaches allow actors to have local or passive objects
[7, 8], which are deep copied between actors or cannot be referenced by other
actors at all. To the best of our knowledge, no actor model has been proposed
yet which allows multiple entry objects or treats hierarchical nesting.

Monitors. Monitors [20, 27] couple data with procedures, which are guaranteed
to run in mutual exclusion. They support multiple control flows coordinated by
condition variables. The original monitor concept has been designed without
pointers and the aliasing problem [28] in mind. The realization of monitors in
mainstream OO-languages typically has two shortcomings. It merely supports
internal concurrency and only protects single objects.

Several Java modifications have been proposed to overcome these shortcom-
ings. Guava [3] distinguishes between monitors and objects and allows monitors
with complex aggregate state consisting of multiple objects, but without multiple
entry objects for a single monitor. Jac [22] is an approach to specify concurrency
mechanisms in Java in a declarative way, but only on the granularity of single
objects. Sequential Object Monitors (SOM) [9] separate scheduling of requests
from objects that handle requests. SOM does not allow multiple entry objects,
nor multiple tasks in a SOM. Parallel Object Monitors (POM) [10] generalize
SOM, by allowing multiple concurrently running threads in a single POM. In
addition, multiple objects can be controlled by a single POM. In contrast to
SOM, POM does not guarantee data-race freedom.

Transactions. When talking about (software) transactions one must distin-
guish the implementation side and the language side. There are many proposals
how to implement transactions, either using ordinary locks [25], or implement-
ing a transactional memory in software only [39], in hardware [23], or both [24].
A still open question is how transactional behavior could be integrated into
object-oriented languages. Atomic blocks [21] are one idea, another are atomic-
ity annotations [15]. The problem of these pure code-centric approaches is that
still high-level inconsistencies can occur if invariants range over several objects
[41]. Atomic sets [41] are one answer to overcome this problem. Communication
of threads as well as other waiting conditions within transactions are addressed
in [40]. Although transactions can be implemented distributively, transactional
memory is not a concept which can easily be generalized to the distributed set-
ting. Thus we see transactional memory as an orthogonal concept which may be
integrated in our model to allow truly parallel tasks within a single cobox, for
example. An interesting starting point would be the work of Smaragdakis et al.
[40].
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cobox class Consumer {
Producer prod;
Consumer(Producer p) { prod = p; }
void consume() {

Fut<Product> f = prod!produce();
... // do something else
Product p = f.get; // wait for result
... // consume p

} }

interface Producer { Product produce(); }

cobox class SimpleProducer
implements Producer {
Product produce() {

Product p = ... // produce p
return p

}
}

Fig. 1. Producer-Consumer example

3 Programming with Concurrent Boxes

The novel concept of our programming language are coboxes. Like objects,
coboxes are runtime entities. CoBoxes are containers for objects. Every object
exactly belongs to a single cobox for its entire lifetime. CoBoxes are also con-
tainers for cooperatively scheduled tasks, where at most one task is active and
all other tasks are suspended. The important difference to other active object
approaches is that activity is not bound to a single object, but to a set objects,
namely the objects that belong to the same cobox. This also means that coboxes
generalize active objects as active objects can be simulated by coboxes contain-
ing only single objects. All objects of a cobox can be referenced by other coboxes
without any restriction. Moreover, coboxes can be nested, i.e. coboxes can be
contained in other coboxes, which allows cobox-internal concurrency and reuse
of cobox classes.

To explain our cobox concept we use a Java-like language called JCoBox.
JCoBox is Java where the standard concurrency mechanisms are replaced by
the following ones:

– Annotation of classes as cobox classes
– Asynchronous method invocation with futures as results
– Task coordination by await, get and yield expressions.

If none of these constructs is used, a JCoBox program behaves like a correspond-
ing sequential Java program.

3.1 CoBoxes as Active Objects

If a cobox only consists of one object, it behaves like active objects in Creol [12].
We illustrate this with a simple producer-consumer example shown in Fig 1. Be-
sides a Producer interface, the example contains a Consumer and SimpleProducer
class, which both are declared as cobox classes. This means that objects of these
classes always live in separate coboxes, as instantiating a cobox class creates a
new cobox together with its main object. The Consumer object has a reference to
a Producer object. To get a new Product, the consumer asynchronously invokes
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cobox class PipelineProducer
implements Producer {
PreProducer pp = new PreProducer();
FinalProducer fp = new FinalProducer();
Product produce() {

PreProduct p1 = pp!produce().await;
Product p = fp!produce(p1).await;
return p;

} }

cobox class PreProducer {
PreProduct produce() { ... }

}

cobox class FinalProducer {
Product produce(PreProduct p) {

...
} }

Fig. 2. Producer with a pipelined production

the produce method of the producer. That call immediately returns a future ob-
ject of type Fut<Product>. While the producer is busy producing the product,
the consumer can do something else in parallel. Eventually, the consumer uses
get on the future object. This blocks the active task of the consumer until the
future value is available, which is the case when the producer returns from the
produce method.

Different coboxes can run concurrently. Thus, multiple consumers can concur-
rently access the same producer. The cobox semantics serializes such accesses.
Each cobox manages an internal set of tasks. Whenever a method is invoked on
an object of a cobox, a new task is created. At most one task is active in a cobox,
all other tasks are suspended. An active task terminates if the execution of the
invoked method terminates. It suspends itself by executing a yield statement or
an await on a future. If no task is active, a scheduler selects one of the suspended
tasks.

3.2 Nested CoBoxes and Internal Concurrency

To support concurrency within a cobox and to implement new cobox classes
using existing ones, it is possible to create nested coboxes. A cobox is always
nested in the cobox which created it. For example, the developer of the Producer
class recognizes that the production process can be divided into two steps. The
first step produces a PreProduct which can then be used in a second step to
produce the final product. Thus, it has a production pipeline, which doubles the
throughput of the producer. The pipelined producer implementation is shown
in Fig. 2. The implementation of the produce method, asynchronously invokes
the produce methods of the nested producers and uses await to wait for the
result. Thus, the task that executes the produce method suspends itself after it
has sent the first message and waits for the result. While the nested coboxes
concurrently work on the production, the Producer can accept other produce
messages and activate tasks, resulting in an interleaved execution of multiple
tasks in the producer, as well as a parallel execution of the nested pre- and
final producers. Notice that the use of nested coboxes is transparent to users of
PipelinedProducer objects.
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class LinkedList<V> { ... }

cobox class ProducerPool {
LinkedList<Producer> prods;
ProducerPool() {

prods =
new LinkedList<Producer>();

// ... fill pool with producers
}
Producer getProducer() {

return new ProducerProxy(this);
} }

class ProducerProxy implements Producer {
ProducerPool pool;
ProducerProxy(ProducerPool p) {

pool = p;
}
Product produce() {

while (pool.prods.isEmpty()) yield;
Producer p = pool.prods.removeFirst();
Product res = p!produce().await;
pool.prods.append(p);
return res;

} }

Fig. 3. Producer pool example

3.3 Multiple Entry Objects

The granularity of an object is often insufficient to model complex components.
In general, a component has a complex internal state consisting of multiple
objects as well as multiple objects which act as entry objects to the component,
extending its external interface. For example, in the producer-consumer scenario,
it might be useful to improve parallelism by introducing a pool of producers. The
producer pool implementation is shown in Fig. 3. The ProducerPool cobox class
has a field prods holding a list of currently free producers. A client can use the
getProducer method to obtain a new Producer instance. The getProducer method
returns an instance of a ProducerProxy. As the ProducerProxy class is not a cobox
class, all its instances are contained in the ProducerPool cobox that created them.
To better understand the cobox structure that appears at runtime, we show a
runtime snapshot of the producer pool example in Fig. 4. It shows the nesting
of the coboxes as well as which objects belong to which coboxes.

A ProducerPool is an example of a more realistic cobox. It consists of the
main object of type ProducerPool, further ProducerProxy entry objects, the ob-
jects implementing the LinkedList, and the nested PipelinedProducer coboxes. The
interesting part is the implementation of the produce method. First, it ensures
that the list of free producers is not empty. This is done in a while loop, suspend-
ing the running task with a yield statement, until the list is not empty anymore.
This illustrates a non-blocking wait. (So far, we did not include orthogonal con-
cepts like guards or wait conditions to the language; cf. Sect. 5 for a discussion).
As the active task always has exclusive access to all objects of its cobox until it
explicitly suspends itself, the code in the produce method of class ProducerProxy
can safely remove the first entry of the free producers list, as the list belongs to
the same cobox as the ProducerProxy object. After removing the first element,
the task asynchronously calls the produce method of the producer and suspends
itself until the result is available by using the await operation. Finally, the used
producer is appended to the list of free producers again.
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Fig. 4. A runtime snapshot of the producer pool example. Rectangles denote coboxes,
rounded rectangles denote objects, edges with arrows denote references.

cobox class Subject {
LinkedList<Observer> obs =

new LinkedList<Observer>();
State state = ... // initialize state
State getState() { return state; }
void updateState(State newState) {

state = newState; notifyObservers();
}
void notifyObservers() {

for (Observer o : obs) { o!changed(this); }
}
void register(Observer o) { ... }

}

cobox class Observer {
void changed(Subject s) {

// callback
State state = s.getState();
// ... do something

}
}

Fig. 5. Subject-Observer example

3.4 Controlling Reentrant Calls

An important aspect of coboxes is that coboxes can control reentrant calls. Reen-
trant calls even happen in a purely sequential setting and complicate the reason-
ing about object-oriented programs. Figure 5 shows a typical subject-observer
scenario. A Subject has an internal state and allows to register Observers which
get notified about state changes. When notified, the Observer calls back to the
Subject to get the new state. If this scenario would be implemented in sequen-
tial Java, the method call o.changed(this) would result in a reentrant call by the
called observer. While the observers are notified about the state change, theoret-
ically arbitrary calls to the Subject could happen. In the cobox implementation,
the observers are notified by an asynchronous call. As the notifying task does
not suspend itself, no other method can be activated in the cobox of the Sub-
ject until the task has finished. Thus, the s.getState() calls of the observers are
delayed until all observers have been notified. This guarantees that the Sub-
ject cannot be changed while the observers are notified. Note that even though
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we are in a concurrent setting, we get stronger guarantees than in the sequential
Java setting, which eases behavioral reasoning.

The Java behavior can be simulated in JCoBox by calling await on the result
of the o!changed(this) call, as in this case the current task suspends itself until
the future value is available, i.e. until the called method has been finished. In
between, other tasks can be activated, for example, tasks created by reentrant
calls. Using a get instead of an await would result in a deadlock, because the
active task waits for the result of the future without allowing other tasks to be
activated – it blocks the cobox. Thus tasks created by reentrant calls cannot be
activated. Note that this only applies if the future value is calculated by a task
of a different cobox. If the future was the result of a self-call, that is, a call on
an object of the same cobox, then such dependencies are resolved by activating
the task responsible for calculating the future value.

4 Formal Semantics

In this section we present a formal dynamic semantics for a core language
of coboxes, called JCoBoxc. JCoBoxc shares ideas from Featherweight Java
[29], ClassicJava [16], Creol [12] and a previous formalization of a sequen-
tial language with boxes by the authors [37]. JCoBoxc only contains the core
object-oriented language constructs for inheritance with method overriding and
synchronous method calls as well as the new features for cobox classes, asyn-
chronous method calls, futures, and task suspension. Other language features
could be added as usual. Typing for JCoBoxc is similar to Java. The only nec-
essary adaptation is the integration of futures which is straightforward.

4.1 Syntax

Figure 6 shows the abstract syntax of our language. Lower-case letters represent
meta-variables, capital letters represent subsets of syntactic categories, and over-
bars indicate sequences of elements (• is the empty sequence, ◦ is concatenation
of sequences). A program p is a set of class declarations D. To be executable a
program must contain a cobox class Main with a main method. Such a program
is then executed by creating an instance of Main and executing the main method.
A class declaration d consists of a class name c, a super class name c′, a list of
field declarations c f , and a set of method declarations H . We assume a prede-
fined class Object with no fields, no methods and no super class. A class can be
declared to be a cobox class by using the cobox keyword. Methods return the
value of their body expression as result. New objects are created by the new c
expression, all fields are initialized to null, constructors are not supported. let
expressions introduce new local variables and can be used for sequential compo-
sition. An asynchronous method invocation, indicated by an exclamation mark,
always results in a reference to a future. A future is an object of the special
class Fut (details below). The value of a future can be obtained by either using
get or await expressions with different blocking semantics. A yield suspends the
currently active task allowing other tasks to proceed.
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p ∈ Prog ::= D

d ∈ D ⊆ ClassDecl ::= [cobox] class c extends c′ { c f ; H }
h ∈ H ⊆ MethDecl ::= c n(c x){e}

e ∈ E ⊆ Expr ::= x | null | new c | e.f | e.f = e | let x = e in e |
e.n(e) | e!n(e) | e.get | e.await | yield | e; e′

c ∈ class names, n ∈ method names, f ∈ field names, x ∈ variable names

Fig. 6. Abstract syntax of JCoBoxc

In the syntax above, we listed synchronous calls and sequential composition
to stress that they are covered by the core language. However, in the following,
we treat them as syntactic sugar to further compactify the semantics: e.n(e) ≡
e!n(e).get and e; e′ ≡ let x = e in e′, where x /∈ FV (e′).

4.2 Semantic Entities

A new aspect of the cobox semantics is that the heap is explicitly partitioned
into the subheaps corresponding to coboxes. In particular, each cobox has its
own objects. Compared to a formalization with a global heap and additional
mappings capturing the box structure and the information to which box an
object belongs, an explicit partitioning allows the creation of objects in a box-
local way without knowing the global state. This simplifies modular treatment
of box implementations (see [37]) and reflects distributed object-oriented
programming.

The necessary semantic entities are shown in Figure 7. The state b of a cobox
is represented by a tuple B〈w, O, B, T, M, tε, mε〉, consisting of a cobox reference
w, a set of objects O, a set of nested coboxes B, a set of suspended tasks T , a
set of incoming messages M , an optional active task tε and an optional current
message mε. To simplify wording, we will not distinguish between a cobox and
its state when it is clear from the context. A cobox reference is a sequence of
cobox identifiers ιb describing the path of the cobox in the nesting hierarchy of
coboxes. This means that if a cobox has reference w then all its directly nested
coboxes have references of the form w.ιb, whereas the root cobox has a single ιb
as reference.

Objects and their states are represented by triples O〈ιo, c, v〉 with a box-unique
object identifier ιo, a class name c, and the list of field values v. An object o
always belongs to a certain cobox. If w is the reference of this cobox and ιo
the object identifier of o, the globally unique name of o is w.ιo.1 The fields of
an object can only be accessed by objects of the same cobox. Objects of other
coboxes must use method calls.

Every cobox has a set of suspended tasks T and an optional active task
tε. A task t corresponds to a single method activation and is represented by
1 This is similar to the naming scheme in a tree-structured file system: coboxes corre-

spond to directories, objects to files.
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b ∈ B ⊆ CoBox ::= B〈w, O, B, T, M, tε, mε〉 coboxes
o ∈ O ⊆ Obj ::= O〈ιo, c, v〉 objects

| O〈ιo, Fut, vε〉 future objects
t ∈ T ⊆ Task ::= T〈r, e〉 tasks

m ∈ M ⊆ Msg ::= M〈r, r′, n(v)〉 call messages
| M〈r, v〉 return messages

v ∈ V ⊆ Value ::= r | null values
r ∈ R ⊆ Ref ::= w.ιo object references

w ∈ W ⊆ CoRef ::= w.ιb | ιb cobox references
e ∈ E ⊆ Expr ::= . . . | v extended expressions

l ∈ Lab ::= ↑m | ↓m | τ labels
ιo ∈ ObjId object identifiers
ιb ∈ BoxId cobox identifiers

Fig. 7. Semantics entities of JCoBoxc . Optional terms are indicated by an ε as index
and may be ε. Small capital letters like B or K are used as “constructors” to distinguish
the different semantic entities syntactically.

a pair T〈r, e〉 where r references the future that will receive the result of the
call and where e is the expression to be reduced. CoBoxes communicate by ex-
changing messages. A message is either a call or return message. A call message
M〈r, r′, n(v)〉 consists of a future reference r, which waits for the result of the call,
a receiver reference r′ together with the called method name n, and argument
values v. A return message M〈r, v〉 consists of the target future reference r and
the result value v.

Futures are modeled as objects of the predefined class Fut with the following
implementation:

class Fut extends Object { Object await() { this.await } }

Instances of the Fut class cannot be created explicitly, but are implicitly created
by an asynchronous method call. A future object has a single optional value vε,
which is ε until the value of the future is available. This value cannot be set
by field updates and may only be read by e.get or e.await expressions. Future
references can be used like object references, in particular they can be passed to
and used by other coboxes. Therefore, the Fut class contains an await() method
that is not invoked explicitly, but used whenever a get or await operation is
executed on a future object, not belonging to the current cobox. In that case,
the await() method is asynchronously called on the future with an immediate
get or await, respectively, resulting in a new future object, which acts as a proxy
for the former future.

Evaluation Contexts. For a compact presentation we define some evaluation
contexts [14]. An evaluation context is a term with a “hole” � at a certain
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Fig. 8. Overview of the different reduction rules, showing the possible state transitions

position. By writing e�[e′] that hole is replaced by term e′. In our syntax, holes
can only appear at positions where expressions are expected.

e� ::= � | e�.f | e�.f = e | v.f = e� | e�.get | e�.await |
let x = e� in e | e�!m(e) | v!m(v, e�, e)

t� ::= T〈r, e�〉

4.3 Transition Rules

The dynamic semantics of JCoBoxc is defined in terms of a labeled transition
system as a relation on coboxes and labels:

−→ ⊆ CoBox × Lab × CoBox .

The notation b
l−→ b′ means that cobox b can be reduced to b′ with label

l. We distinguish three kinds of transitions: internal steps (l = τ), receiving
a message (l = ↓m), and sending a message (l = ↑m). The transition rules
are shown in Figures 10 and 12, which use auxiliary predicates and functions
defined in Figures 9 and 11. To better understand in which order the different
rules may be executed, we give an overview in terms of an automaton shown
in Figure 8. The automaton states represent the currently active task and the
current message of a cobox. The edges are labeled with the rules that can be
applied. Objects, nested boxes, suspended tasks, and incoming messages are not
shown in the automaton.

Expressions. We start by explaining how expressions are reduced, assuming
that some task is active in the current cobox and that no current message exists
(state t, ε). let expressions are handled by standard capture-avoiding substitution
(let). New objects of non-cobox classes are created in the current cobox with
all values initialized to null (new-obj). If a class is annotated with cobox, a new
nested cobox is created and the new object is created in that cobox instead of
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cobox class c . . .

cobox (c) fields(Object) = •
class c extends c′ { c′′ f ; H }

fields(c) = fields(c′) ◦ f

class c . . . { . . . n( x){e} . . . }
mbody(c, n) = (x)e

class c extends c′ { . . . ; H} n not in H

mbody(c, n) = mbody(c′, n)

Fig. 9. Auxiliary predicates and functions extracting information from the (underlying)
program code

the current cobox (new-cobox). Field selects and field updates are only allowed
on objects of the current cobox (field-select, field-update). The rules selec-
t/update the ith value of the corresponding ith field and reduce to the old/new
value. An asynchronous call is reduced to a reference of a new future object,
which is added to the object set of the cobox. In addition, a call message is
created and set as current message (async-call). A yield expression moves the
active task into the set of suspended tasks, giving other tasks the possibility to
be activated (yield).

Future Expressions. When a future reference r is used, two cases can be dis-
tinguished: local futures and remote futures. Local futures belong to the current
cobox (r = w.ιo, where w is the reference of the current cobox), remote futures
belong to a different cobox (r �= w.ιo). A get expression on a local future is
reduced to the value of the future if the value is available (get-local-success),
otherwise the current task is blocked and remains active until the value be-
comes available. However, to prevent deadlocks, we have to treat synchronous
self-calls as a special case. If a future is computed by a task of the same cobox
(t�[w.ιo.get] ∈ T ) then that task is activated, and the currently active task is
suspended (get-local-self) and later reactivated by (rtrn-self). Like a yield,
an await on a local future suspends the currently active task (await-local). On a
remote future reference r an await or get expression is transformed into an asyn-
chronous method call of the await() method on that future with an immediate
await or get, i.e. into a r!await().await or r!await().get expression, respectively
(await-remote, get-remote). These calls create corresponding local futures
in the current cobox that are handled by the rules explained above.

Task Termination. A task terminates if its expression has been reduced to a
single value. If the task was created due to a self-call and another task in the
current cobox is blockingly waiting for the result (t�[r.get] ∈ T ), that task is di-
rectly activated (rtrn-self). Together with rule (get-local-self) this simulates
a stack-like behavior for synchronous self-calls. If no task in the current cobox
is blockingly waiting for the result, the active task is set to ε, i.e. it vanishes
(rtrn-other). In both cases a return message with the corresponding result
value is set as current message. That message is treated in a next step by a
message handling rule.
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(let)

B〈w, O, B, T, M, t� [let x = v in e], ε〉 τ−→ B〈w, O, B, T, M, t� [[v/x]e], ε〉

(new-obj)

¬cobox (c) ιo fresh in O v = null |v| = |fields(c)| o = O〈ιo, c, v〉
B〈w, O, B, T, M, t� [new c], ε〉 τ−→ B〈w, O ∪ { o }, B, T, M, t� [w.ιo], ε〉

(new-cobox)

cobox (c) ιb fresh in B

v = null |v| = |fields(c)| o = O〈ιo, c, v〉 b = B〈w.ιb, { o }, ∅, ∅, ∅, ε, ε〉
B〈w, O, B, T, M, t� [new c], ε〉 τ−→ B〈w, O, B ∪ { b }, T, M, t� [w.ιb.ιo], ε〉

(field-select)

O〈ιo, c, v〉 ∈ O fields(c) = f

B〈w, O, B, T, M, t� [w.ιo.fi], ε〉
τ−→ B〈w, O, B, T, M, t� [vi], ε〉

(field-update)

O = O′ ·∪ { O〈ιo, c, v〉 } fields(c) = f
O′′ = O′ ∪ { O〈ιo, c, [v/vi]v〉 }

B〈w, O, B, T, M, t� [w.ιo.fi = v], ε〉
τ−→ B〈w, O′′, B, T, M, t� [v], ε〉

(async-call)

ιo fresh in O
m = M〈w.ιo, r, n(v)〉 o = O〈ιo, Fut, ε〉

B〈w, O, B, T, M, T〈r′, e� [r!n(v)]〉, ε〉
τ−→ B〈w, O ∪ { o }, B, T, M, T〈r′, e� [w.ιo]〉, m〉

(yield)

t = t� [yield]

B〈w, O, B, T, M, t, ε〉
τ−→ B〈w, O, B, T ∪ { t }, M, ε, ε〉

(get-local-success)

O〈ιo, Fut, v〉 ∈ O

B〈w, O, B, T, M, t� [w.ιo.get], ε〉
τ−→ B〈w, O, B, T, M, t� [v], ε〉

(get-local-self)

t = t� [w.ιo.get] t′ = T〈w.ιo, e〉
B〈w, O, B, T ·∪ { t′ }, M, t, ε〉

τ−→ B〈w, O, B, T ∪ { t }, M, t′, ε〉

(await-local)

t = t� [w.ιo.await]

B〈w, O, B, T, M, t, ε〉
τ−→ B〈w, O, B, T ∪ { t }, M, ε, ε〉

(get-remote)

r �= w.ιo

B〈w, O, B, T, M, t� [r.get], ε〉
τ−→ B〈w, O, B, T, M, t� [r!await().get], ε〉

(await-remote)

r �= w.ιo

B〈w, O, B, T, M, t� [r.await], ε〉
τ−→ B〈w, O, B, T, M, t� [r!await().await], ε〉

(rtrn-other)

t� [r.get] /∈ T

B〈w, O, B, T, M, T〈r, v〉, ε〉
τ−→ B〈w, O, B, T, M, ε, M〈r, v〉〉

(rtrn-self)

t′ = t� [r.get]

B〈w, O, B, T ·∪ { t′ }, M, T〈r, v〉, ε〉 τ−→ B〈w, O, B, T, M, t′, M〈r, v〉〉

Fig. 10. Expression reduction rules
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m = M〈r, v〉
isReturn(m)

m = M〈r, r′, n(v)〉
target(m) = r′

m = M〈r, v〉
target(m) = r

Fig. 11. Auxiliary predicates and functions

(exec-call-msg)

O〈ιo, c, 〉 ∈ O mbody(c, n) = (x)e t = T〈r, yield; [w.ιo/this, v/x]e〉
B〈w, O, B,T, M, tε, M〈r,w.ιo, n(v)〉〉 τ−→ B〈w, O, B, T ∪ { t }, M, tε, ε〉

(set-future)

m = M〈w.ιo, v〉
B〈w, O ·∪ { O〈ιo, Fut, ε〉 }, B, T, M, tε, m〉 τ−→ B〈w, O ∪ { O〈ιo, Fut, v〉 }, B, T, M, tε, ε〉

(activate-waiting-task)

O〈ιo, Fut, v〉 ∈ O

B〈w, O, B, T ·∪ { t� [w.ιo.await] }, M, ε, ε〉
τ−→ B〈w, O, B, T, M, t� [v], ε〉

(activate-yielded-task)

B〈w, O, B, T ·∪ { t� [yield] }, M, ε, ε〉
τ−→ B〈w, O, B, T, M, t� [null], ε〉

(select-call-msg)

¬isReturn(m)

B〈w, O, B, T, M ·∪ { m }, ε, ε〉
τ−→ B〈w, O, B,T, M, ε, m〉

(select-rtrn-msg)

isReturn(m)

B〈w, O, B, T, M ·∪ { m }, tε, ε〉
τ−→ B〈w, O, B, T, M, tε, m〉

(msg-send)

target(m) �= w.r

B〈w, O, B, T, M, tε, m〉
↑m−→ B〈w, O, B, T, M, tε, ε〉

(msg-rcv)

target(m) = w.r

B〈w, O, B, T, M, tε, mε〉
↓m−→ B〈w, O, B, T, M ∪ { m }, tε, mε〉

(nested-msg-rcv)

b
↓m−→ b′

B〈w, O, B ·∪ { b }, T, M, tε, m〉
τ−→ B〈w, O, B ∪ { b′ }, T, M, tε, ε〉

(nested-msg-send)

b
↑m−→ b′

B〈w, O, B ·∪ { b }, T, M, tε, mε〉
τ−→ B〈w, O, B ∪ { b′ }, T, M ∪ { m }, tε, mε〉

(nested-step)

b
τ−→ b′

B〈w, O, B ·∪ { b }, T, M, tε, mε〉 τ−→ B〈w, O, B ∪ { b′ }, T, M, tε, mε〉

Fig. 12. Message and task handling rules as well as nested box reduction rules

Tasks and Message Handling. Each task corresponds to a method activation.
As method calls are initiated by call messages, a new task is created whenever
the current message is a call message targeting an object of the current cobox
(exec-call-msg). The new task gets the reference of the future, which will hold
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the return value and the body expression of the called method, where formal pa-
rameters are substituted by actual parameters. A yield statement is prepended,
so that newly created tasks are treated like yielded tasks in the set of suspended
tasks. If the current message is a return message targeting a future of the cur-
rent cobox, the value of the future is set to the value of the return message
(set-future).

A cobox is idle if it has no active task and no current message (state ε, ε).
In an idle cobox, a task can be activated if it either was suspended by a yield
expression (activate-yielded-task), or it was suspended by an await expression
on a future whose value is available (activate-waiting-task). An idle cobox can
as well select a message from the set of incoming messages and make it its new
current message (select-*). Whereas a call message can only be selected by an
idle cobox, return messages can also be selected if a current task is active. This
design decision reflects the goal to control all incoming calls, but allow return
messages to reach their destination in nested coboxes without being blocked by
active tasks in the surrounding box.

Messages are routed following the nesting structure. The parent coboxes are
responsible for handling messages coming from and going to nested coboxes.
This allows the parent cobox to control external communication of nested co-
boxes. If the current message is not targeting the current cobox, nor any nested
cobox, it is emitted by rule (msg-send). Messages can be received by a cobox
if they target the cobox itself or any nested cobox (msg-rcv). Messages can be
received in any state and are added to the set of incoming messages. This reflects
the asynchronous character of coboxes. If the current message targets a nested
cobox, i.e. a nested cobox can receive that message, that message is send to the
corresponding cobox by (nested-msg-rcv). If a nested cobox emits a message
that message is added to the set of incoming message of the parent cobox by
(nested-msg-send).

Internal steps of nested coboxes are propagated to its parent cobox and indi-
rectly to the outermost cobox at the root of the box tree by (nested-step). Both
rules are completely independent of the state of the current cobox and thus may
be applied at any time, modeling concurrent behavior.

4.4 Program Execution

A program with a cobox class Main is executed by nesting a cobox instance bmain

of Main in a special root or environment cobox benv and setting the current
message of benv to a call message mmain, which invokes the main method of the
main object ι′o of bmain:

benv ≡ B〈ιb, { O〈ιo, Fut, ε〉 }, { bmain }, ∅, ∅, ε, mmain〉
bmain ≡ B〈ιb.ι′b, { O〈ι′o, Main, null〉 }, ∅, ∅, ∅, ε, ε〉

mmain ≡ M〈ιb.ιo, ιb.ι′b.ι′o, main(•)〉

Program execution is performed by τ -transitions on the environment cobox:

benv
τ−→ · · · τ−→ b′env
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When the main cobox finishes its execution of the main method, it will answer
with a return message, whose result value is stored in the future object ιo of the
environment cobox.

4.5 Properties

JCoBoxc guarantees data-race freedom. As tasks can only access fields of objects
of the same cobox and only one task in a cobox can be active, data-races can
never occur. Furthermore, a task has atomic access to the objects of its cobox
until it explicitly suspends itself.

Internal parallelism by nested coboxes is transparent to clients as all messages
to nested coboxes are controlled by the parent cobox. This allows introducing
parallelism within a cobox without changing its externally visible behavior.

A task can prevent reentrancy while waiting for a result value of a different
cobox using get or synchronous method calls, as then the currently active task is
not suspended. Consequently, no other task can be activated in the cobox. The
only exception are tasks that have to be activated due to self-calls. Note again
that reentrancy is not restricted to single objects, but can be handled for groups
of objects.

A JCoBoxc program exactly behaves like a corresponding sequential Java
program if no additional features of JCoBoxc are used and the only cobox is
the initial Main cobox. This means that this cobox contains all objects that are
created. As in sequential Java only synchronous method calls can be used, these
calls are translated into asynchronous method calls with an immediate get. All
these calls are self-calls, which means that tasks are created and executed in a
stack-like way, simulating the call-stack of sequential Java.

5 Conclusions

We presented coboxes as a data-centric concurrency mechanism for object-orient-
ed programs. CoBoxes hierarchically structure the object-heap into concurrently
running multi-object components. CoBoxes may run completely parallel. Access
to nested coboxes is controlled by the parent cobox. A cobox can have multi-
ple boundary objects allowing the implementation of complex components with
multiple entry objects. A cobox can have multiple tasks, which are scheduled
cooperatively and only interleave at explicit release points. This guarantees that
each task has exclusive access to the state of its cobox until it explicitly sus-
pends itself. CoBoxes communicate via asynchronous method calls with futures,
which allows modeling of synchronous method invocations as a special case. Our
concurrency concept generalizes the active object model to hierarchically struc-
tured, parallel running groups of objects. It guarantees the absence of data-races
and simplifies maintaining invariants ranging over groups of objects. We show
how to use coboxes to write concurrent object-oriented programs and present a
formal semantics for a Java-like core language with coboxes.
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Current Limitations. The presented work is the first step towards generaliz-
ing the active object model to dynamically instantiable components supporting
multiple internal and multiple boundary objects as well as component nesting.
In the following we discuss current shortcomings and limitations.

In the given semantics, scheduling of incoming messages is nondeterministic.
In practice, one could implement a default FIFO behavior, or allow the program-
mer to specify the scheduling algorithm [7, 9, 10]. Join patterns [17, 4, 18] could
also be introduced as a scheduling and synchronization mechanism for incoming
messages. Regarding coordination of tasks, in the presented model, tasks are
activated nondeterministically when they are ready. A more fine-grained control
is desirable, especially when waiting for conditions to become true. Concepts
that can be used to achieve this are for example: guards [26], events [19], and
condition variables [27].

A limitation of our current model is that objects and nested coboxes can only
be created in the current cobox. We adopted this restriction to focus on the
essential cobox concepts. More flexibility would be desirable, in particular the
possibility to create objects or nested coboxes in other coboxes. One way to do
this is to extend the new expression by an argument where the new object should
be created.

Future Work. One of our future goals is to use the cobox model for distributed
object-oriented programming such that each remote site corresponds to a cobox.
In such scenarios, but also larger local systems, it is desirable to distinguish
between value objects and objects passed by reference. Value objects are passed
by creating a deep copy in the receiving cobox. This way the number of non-local
messages can be drastically reduced. From a conceptual point of view, objects
would be distinguished whether they represent data or not, like it is done in the
Java RMI mechanism and other approaches [7, 3].

Acknowledgments. We thank Ina Schaefer and the anonymous reviewers for
their helpful comments.
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Abstract. Reasoning about object-oriented programs is hard, due to
aliasing, dynamic binding and the need for data abstraction and framing.
Reasoning about concurrent object-oriented programs is even harder,
since in general interference by other threads has to be taken into account
at each program point.

In this paper, we propose an approach to the automatic verification
of concurrent Java-like programs. The cornerstone of the approach is
a programming model, a set of rules, which limits thread inference to
synchronization points such that one can reason sequentially about most
code. In particular, programs conforming to the programming model are
guaranteed to be data race free. Compared to previous incarnations of
the programming model, our approach is more flexible in describing the
set of memory locations protected by an object’s lock. In addition, we
combine the model with an approach for data abstraction and framing
based on dynamic frames. To the best of our knowledge, this is the first
paper combining dynamic frames and concurrency.

We implemented the approach in a tool, called VeriCool, and used it
to verify several small concurrent programs.

1 Introduction

In recent years, multi-processor and multi-core computers have become a com-
modity. To leverage the power provided by these multi-processor machines within
a single application, developers must resort to multithreading. However, writing
correct multithreaded programs is challenging. First of all, the non-determinism
caused by thread scheduling makes finding errors through testing much less
likely. Moreover, even when anomalies show up, they can be hard to reproduce.
Secondly, reasoning about concurrent programs is hard, since in general inter-
ference by concurrently executing threads has to be taken into account at each
program point. In particular, when threads concurrently access a shared data
structure, special care has to be taken to avoid data races.

A data race occurs when two threads simultaneously access a shared memory
location, and at least one of these accesses is a write access. Developers typically
consider data races to be errors, since races can lead to hard-to-find bugs, and
because they give rise to counter-intuitive, non-sequentially consistent executions
under the Java memory model [1].

A simple strategy to prevent data races is to enclose each field access o.f
within a synchronized(o) block. Although this strategy is safe and rules out
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non-sequentially consistent executions, it is rarely used in practice, since it incurs
a major performance penalty, is verbose, and only prevents low-level races. In-
stead, standard practice is to only lock objects that are effectively shared among
multiple threads. However, it is difficult to determine which objects are meant
to be shared and what locations are protected by an object’s lock based solely
on the program text. Therefore, it is hard for a compiler to determine whether
the synchronization performed by the program suffices to rule out data races.

In this paper, we propose a programming model (a set of rules) such that
programs that conform to the model contain no data races. In addition, we define
a set of annotations to make the use of the programming model explicit. For
example, a developer can annotate his code to make explicit whether an object is
meant to be shared or not. Moreover, we explain how based on these annotations
one can modularly and automatically verify whether a given program conforms
to the model.

In summary, the contributions of this paper are as follows:

– We propose an approach to the automatic verification of concurrent Java-
like programs. The cornerstone of the approach is a programming model for
preventing data races. Compared to previous incarnations of the program-
ming model [2,3,4], the approach is more flexible in describing the locations
protected by an object’s lock. The additional flexibility allows us to verify
programs which cannot be verified in [2,3,4].

– To support data abstraction and framing, the approach relies on an exist-
ing solution based on dynamic frames [5,6]. A key insight of this paper is
that dynamic frames can not only be used for abstract framing, but also
to abstract over the locations protected by an object’s lock. To the best of
our knowledge, this is the first paper that combines concurrency and the
dynamic frames approach.

– We implemented the approach in a tool, and used it to verify several con-
current programs. The verifier can be downloaded from the authors’ home-
page [7].

The remainder of this paper is structured as follows. In Section 2, we describe a
programming model that ensures data race-freedom, and a way to verify whether
a given Java program conforms to the model. In Section 3, we extend the ap-
proach of Section 2 with support for data abstraction. Finally, we compare with
related work and conclude in Sections 4 and 5.

2 Preventing Data Races

In this section, we present the programming model that rules out data races
(2.1), describe the annotations needed for modular verification (2.2), show how
to statically verify whether an annotated program conforms to the model (2.3),
and finally we explain why this verification approach works (2.4).
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2.1 Programming Model

Our programming model prevents data races by ensuring that no two threads
can ever access the same memory location concurrently. More specifically, we
conceptually associate with each thread an access set, i.e. a set of memory loca-
tions that the thread can read and write, and the model guarantees that access
sets of different threads are disjoint at all times. In our model, a location consists
of an (object reference, field name) pair, and the location corresponding to o.f
is denoted &o.f . The access set of a thread can grow and shrink over time. More
specifically, four operations can affect a thread’s access set:

– Object creation. When a thread t creates a new object o, all locations
corresponding to fields of o are added to t’s access set. For example, consider
the constructor of the class Counter of Figure 1. At the beginning of this
constructor, the field count of the newly created Counter object is made
accessible to the current thread, and therefore it is safe to assign to the field
within the body of the constructor.

– Object sharing. In addition to the accessibility of each location, the pro-
gramming model also tracks each object’s sharedness. That is, the model

final class Counter {
int count ;

monitorfootprint
{ &count };

monitorinvariant
acc(count) ∧ 0 ≤ count ;

Counter()
ensures acc(count);
ensures ¬this.shared ;
ensures this.count = 0;

{
count = 0;

}
}

class Session implements Runnable {
shared Counter counter ;

Session(Counter c)
requires c.shared ;
ensures acc(counter);
ensures ¬this.shared ;

{ counter = c; }

void run()
requires acc(this.∗);
requires ∀{Object o • ¬o.locked};

{
synchronized(counter ){

counter .count + +;
}

}
}

Counter c = new Counter ();
share c;
new Thread(new Session(c)).start ();
new Thread(new Session(c)).start ();

Fig. 1. A small concurrent program. The main program creates a new Counter object
c, shares it, and then creates two threads. Each of these threads increments the counter
within a synchronized block.
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distinguishes unshared from shared objects. An unshared object is not meant
to be locked, and a program violates the model if it attempts to do so. Con-
ceptually, an unshared object has no corresponding lock. A shared object on
the other hand can be locked by any thread.

The set of locations protected by a shared object’s lock is called that ob-
ject’s monitor footprint. Our approach does not force the lock of an object o
to protect all of o’s fields, and therefore o’s monitor footprint does not nec-
essarily contain all fields of o. An object’s monitor invariant is a predicate
over its monitor footprint. Immediately after acquiring an object’s lock, one
may assume that the monitor invariant holds, and vice versa when releasing
the lock one must establish the monitor invariant. For example, the monitor
invariant of a Counter object o (Figure 1) states that the location corre-
sponding to the field o.count is accessible, and that the field holds a positive
value.

Initially, new objects are unshared. When the execution of a thread t
encounters a share o; statement1, o transitions from the unshared to the
shared state, provided o is not shared yet, o’s monitor footprint is accessible
to t, and o’s monitor invariant holds. In addition, the sharing thread t loses
access to all locations in o’s monitor footprint. This is the only way an
unshared object can become shared. After sharing, a thread must lock o
to gain access to the locations in o’s monitor footprint. Once an object is
shared, it can never revert to the unshared state.

– Acquiring and releasing locks. After sharing an object o, threads can
attempt to acquire o’s lock. Whenever a thread t acquires this lock (e.g. in
Java when t enters a synchronized(o) block), o’s monitor footprint becomes
accessible to t. Moreover, t may assume that o’s monitor invariant holds over
the locations in o’s monitor footprint immediately after the acquisition of
o’s lock. When t decides to release o’s lock, the thread again loses access
to all locations in o’s monitor footprint. Moreover, the programming model
enforces that t can only release the lock when the monitor invariant holds.

Note that an object’s monitor footprint can grow and shrink over time.
In particular, the monitor footprint at the time of locking does not have to
equal the footprint at the time of release. This way accessibility of locations
can be transferred from one thread to another.

– Thread creation. Starting a new thread transfers the accessibility of the
locations corresponding to fields of the receiver object of the thread’s main
method (i.e. the Runnable object in Java or the ThreadStart delegate in-
stance’s target object in .NET) from the starting thread to the started
thread. For example, starting a new thread with the Session object of
Figure 1 transfers accessibility of the object’s counter field from the starting
thread to the started thread.

The programming model described above is similar to the techniques used in
various extensions of separation logic [8,9,10,11]. We discuss them in Section 4.
1 The share statement is a special annotation which can appear in the body of a

program. It is discussed in more detail in Section 2.2.
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2.2 Annotations

Executions of programs that conform to the programming model contain no data
races. However, without annotations it is difficult to verify whether a program
conforms to the model. For example, in general it is undecidable to determine
based on the program text whether an object is always shared or unshared at
a given program point. In addition, we want to perform modular verification.
That is, the correctness of a method implementation must not depend on im-
plementation details of other methods and modules. Therefore, we propose a set
of annotations that make the use of the programming model explicit and enable
modular verification. We explain each annotation by means of the example of
Figure 1.

Method Contracts. Each method has a corresponding method contract, con-
sisting of a precondition and a postcondition. Both the precondition and the
postcondition are boolean side-effect free expressions. The former define valid
method pre-states, while the latter define valid method post-states. An expres-
sion is side-effect free if it contains no object or array creations, simple or com-
pound assignments, and contains no method invocations2. Only parameters and
the variable this may occur free in preconditions. Postconditions may addi-
tionally mention the variable result, denoting the return value of the method.
Furthermore, postconditions may contain old expressions old(e), denoting the
value of the expression e in the method’s pre-state.

Class Contracts. Each class has a corresponding class contract, consisting of a
monitor footprint and a monitor invariant. The monitor footprint of a class C is a
side-effect free expression of type set which defines the set of locations protected
by objects with dynamic type C. An expression of type set represent a set of
memory locations. Each memory location is a (object reference, field name) pair,
and the location corresponding to o.f is denoted &o.f . For example, the lock of
a Counter object c protects the singleton { &c.count }. The monitor invariant
of a class C is a boolean, side-effect free expression, and the programming model
ensures that it can be assumed to hold on entry of a synchronized(o) block
(where o has dynamic type C), provided the invariant is established again at the
end of each synchronized block. For example, the monitor invariant of Counter
states that the count field is accessible and that it holds a positive value. Only
the variable this may occur free in class contracts. An omitted monitor footprint
defaults to the empty set, while an omitted monitor invariant defaults to true.

Ghost State. The programming model tracks for each object whether it is shared
or unshared, locked or unlocked, and for each location which thread is allowed
to access the location. To express these properties, we introduce three special
expressions. o.shared indicates whether o is shared. Similarly, o.locked indicates
whether o is locked by the current thread. Hence, the second precondition of the
2 In Section 3, we relax the definition of side-effect free expression by allowing invo-

cations of pure methods.
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method run, which is the first method executed by a new thread, states that the
thread holds no locks. Finally, the boolean expression acc(o.f) denotes whether
the location &o.f is accessible to the current thread. All three expressions can
only be used within monitor invariants, preconditions and postconditions. In
particular, they cannot appear within method implementations. This restriction
ensures that annotations are erasable, i.e. that they can be omitted without
affecting the execution of the annotated program. The expression acc(o.∗) is
syntactic sugar for stating that all locations corresponding to fields of o are
accessible.

Share Statement. A developer can indicate that an unshared object o should
transition to the shared state via the share o; statement. For example, the code
snippet at the bottom of Figure 1 creates a new Counter object c and shares
it. share is a ghost statement which only affects ghost state. As such, it can be
erased without affecting the original program.

Shared Modifier. A field can be annotated with a shared modifier, indicating
that it can only hold null or a reference to a shared object. The field counter
of the class Session is an example of such a field. In the next section, we store
information about the sharedness of fields in invariants, and we no longer need
this modifier.

The program of Figure 1 is correctly synchronized, and the annotations enable
the static verifier to prove this. In the next subsection, we explain how verification
works.

2.3 Verification

Our verifier takes an annotated program as input and generates, via a translation
into an intermediate verification language called BoogiePL [12], a set of verifica-
tion conditions. The verification conditions are first-order logical formulas whose
validity implies the correctness of the program. The formulas are analyzed auto-
matically by satisfiability-modulo-theory (SMT) solvers. Our approach is based
on a general approach described in [13]. In this subsection, we focus on novel
aspects of our approach: namely the modeling of accessibility, lockedness and
sharedness, the tracking of monitor footprints and monitor invariants, and the
translation of statements and expressions to BoogiePL in a way that guarantees
compliance with the programming model.

Notation. Heaps are modeled in the verification logic as maps from object ref-
erences and field names to values. For example, the expression h[o, f ] denotes
the value of the field f of object o in heap h. The function wf returns whether a
given heap is well-formed, i.e. whether the fields of allocated objects point to al-
located objects. H denotes the current value of the global heap. Allocatedness of
objects is tracked by means of a special boolean field named alloc. The function
typeof returns the dynamic type of a given object reference.

TrEh1,h2
�e� denotes the translation of the side-effect free expression e to an

equivalent first-order, BoogiePL expression, in a context where h1 denotes the
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current value of the heap and h2 denotes the value of the old heap. Similarly,
DfE

h1,h2
�e� denotes the definedness of the side-effect free expression e, in a con-

text where h1 denotes the current value of the heap and h2 denotes the value
of the old heap. For example, the definedness of the expression x/y is given by
y �= 0. We will omit the value of the old heap when translating single-state ex-
pressions. Finally, TrS�s� denotes the translation of the statement s to a number
of BoogiePL statements.

Ghost State. The programming model tracks for each location whether it is
accessible or not. In the verification logic, the accessibility of the location &o.f
in a heap h is denoted h[o, accessible ][f ]. That is, h[o, accessible ] is a map from
field names to booleans where each entry indicates whether the corresponding
location is accessible. In addition, the programming model divides the set of
object references into shared and unshared objects, and it further subdivides
the set of shared objects into locked and unlocked objects. In the verification
logic, an object is shared if h[o, shared ] is true. Similarly, an object is locked by
the current thread if h[o, locked ] is true.

Monitor Footprints and Invariants. The programming model associates with
each object a monitor footprint and a monitor invariant. To model this associa-
tion, the verification logic contains two function symbols: monitorfootprint and
monitorinvariant . For instance, monitorfootprint(o) returns the set of locations
protected by o’s lock. To connect these function symbols to the class contracts,
we introduce an axiom per class. More specifically, for each class C with monitor
footprint F and monitor invariant I, the verification logic contains the following
axiom:

axiom (∀h, this • wf (h) ∧ h[this , alloc] ∧ this �= null ∧ typeof (this) = C ⇒
monitorfootprint(h, this) = Treh�F � ∧ monitorinvariant(h, this) = Treh�I�);

The class contract of a class C with monitor footprint F and monitor invariant
I is well-formed only if the following conditions hold: (1) I is well-defined (i.e.
∀h, this • wf (h) ⇒ DfE

h �I�), (2) F is well-defined provided I holds, (3) F only
contains accessible locations assuming I holds, (4) I only requires accessibility
of locations in F assuming that I holds, and (5) both I and F are framed by F
provided I holds, that is any heap modification outside of F does not affect the
values of I and F .

Translation of Statements and Expressions. The programming model consists of
a set of rules that together guarantee the absence of data races. To verify whether
a program complies with the model, we have to update the ghost state tracked
by the model after each statement, and check that statements do not violate
the model. Figures 3, 5 and 6 of Appendices A and C contain the translation
to BoogiePL for key statements and expressions. In this section, we shortly
highlight two important aspects of the translation.

A central rule in the programming model is that threads can only access
locations in their corresponding access set. To enforce this restriction, each field
access (both read and write) is preceded by a proof obligation requiring &o.f to
be accessible the current thread.
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In general, interference by concurrently executing threads has to be taken into
account at each program point. However, our programming model enforces that
threads can only read and write accessible locations. Moreover, the accessibil-
ity of a location with respect to a certain thread t can only be changed by t
itself. Therefore, we only need to take into account the effect of other threads at
synchronization points. More specifically, in the translation to BoogiePL, the ef-
fect of other threads is modeled by havocing (i.e. assigning non-deterministically
chosen values to) locations that are added or removed from a thread’s access set
at share and lock statements.

Method Contract Validity. Programming errors can not only show up in method
implementations, but also in method contracts. To ensure that contracts are
meaningful, we check that they are well-defined. For a method m with precon-
dition P , postcondition Q and parameters x1, . . . xn in a class C, the following
proof obligation is generated:

assert (∀hold , h, this , x1, . . . xn • wf (hold ) ∧ wf (h) ∧ h[this , alloc] ∧ hold[this , alloc]∧
this �= null ∧ typeof (this) <: C ⇒ DfE

hold
�P � ∧ (TrEhold

�P � ⇒ DfE
h,hold

�Q�));

2.4 Soundness

In order to prevent data races, (1) threads should only be able to access locations
in their access set, and (2) thread access sets and the monitor footprints of
shared, non-locked objects must partition the set of allocated locations.

Since each field access is guarded by an accessibility check (see Figures 3
and 5), property (1) follows immediately. We outline a proof by induction on
the length of the execution trace for property (2). In the initial state, the set
of allocated locations is empty, the main thread’s access set is empty, and no
objects are shared yet. Therefore, property (2) holds in the initial state. Now
assume that property (2) holds in a state σ. We have to demonstrate that each
statement s leading from σ to a state σ′ preserves (2). We consider two cases.
The other cases are similar.

– Assume that s is a share o; statement. Successful verification ensures that
o is non-null, unshared and that its monitor invariant holds in state σ. The
well-formedness of the class contract implies that o’s monitor footprint con-
tains only locations that are accessible to the current thread. Immediately
after the share statement, o is shared and the current thread can no longer
access the locations in o monitor footprint. Property (2) is preserved, since
the access sets of other threads are not affected, the footprints of shared, non-
locked objects are not affected, and the old access set of the current thread
is split in the new access set and the locations in o’s monitor footprint.

– Assume that s is a lock acquisition (synchronized(o)). The program verified
successfully, and hence we may assume that o was shared but not locked
by the current thread before entering the synchronized block. Moreover,
the Java semantics guarantee that upon entering the synchronized block no
other thread was holding o’s lock. As a consequence, we may assume that
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o’s monitor footprint is disjoint from any thread’s access set in state σ.
By adding the monitor footprint to the current thread’s access set, and by
making o locked, we preserve property (2) in σ′.

By induction, we may conclude that programs that verify only give rise to
states where (2) holds.

3 Data Abstraction

Data abstraction is crucial in the construction of modular programs, since it en-
sures that internal changes in one module do not propagate to other modules. In
object-oriented programs, classes typically enforce data abstraction by providing
access to their internal state only through methods.

The class Counter in Figure 1 however was not written with data abstraction
in mind, since it directly exposes its internal count field to client code. As a
consequence, any change in Counter ’s implementation forces us to rewrite or at
least reconsider the correctness of client code. For example, renaming the count
field breaks the implementation of Session ’s run method.

Recently, we proposed an approach to the automatic verification of sequen-
tial, object-oriented programs that use method calls in specifications for data
abstraction [5]. In this approach, methods used for this purpose have to be side-
effect free, and are called pure methods. To solve the framing problem, that is to
determine the effect of field assignments and executions of non-pure methods on
the return values of pure methods, the approach relies on method footprint an-
notations, which specify an upper bound on the memory locations read (in case
of pure methods) or written (in case of non-pure methods) by the correspond-
ing method. More specifically, to prove that a state change (i.e. field update or
non-pure method invocation) does not affect the return value of a pure method,
one has to show that the footprint of the state change is disjoint from the pure
method’s footprint. Thanks to the use of dynamic frames [6], special pure meth-
ods that return a set of memory locations, method footprints can be specified
without breaking data abstraction.

As an example, consider the class Counter of Figure 2. Contrary to the older
version of the class of Figure 1, client code can only access the internal field count
through the setter increment and the getter getCount . Furthermore, Counter ’s
method contracts do not mention the field count , and instead rely on public,
pure methods to specify the behavior. In particular, both pure and non-pure
methods define the locations they read or write in terms of the pure method rep,
a dynamic frame. Since client code only depends on Counter ’s public interface,
changing the class’s internal representation does not affect them. For example,
renaming the field count would not endanger the correctness of the class Session .

In the approach described in the previous section, the monitor footprint of a
class C specifies the set of locations protected by locks of objects with dynamic
type C. For example, the class contract of Counter (Figure 1) specifies that the
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lock of a Counter object o protects the singleton { &o.count }. However, this
class contract exposes the internal field count . A key insight of this paper is that
dynamic frames can not only be used to abstractly specify the locations read
or written by a method, but also to abstract over the locations protected by an
object’s lock. Indeed, the dynamic frame rep can be used to specify Counter ’s
monitor footprint without revealing any internal fields, as shown in Figure 2.
Similarly, the pure method inv can be used to abstractly specify the monitor
invariant.

In summary, by combining the approach for verifying concurrent programs of
the previous section with the solution for data abstraction and framing of [5],
we can construct a verifier for concurrent programs that supports both data
abstraction and framing. In the remainder of this section, we describe the extra
annotations needed for dynamic frames, we highlight the most important changes
in verification with respect to [5], and finally we sketch how our approach can
be extended to deal with read-write locks.

3.1 Annotations

We extend the set of annotations with pure and predicate method modifiers and
with method footprints.

Pure Methods and Predicates. A method can be annotated with a pure modifier,
indicating that it can be used in specifications. The body of a pure method must
consist of a single return statement returning a side-effect free expression. From
now on, side-effect free expressions may contain method invocations but only
to pure methods. Non-pure methods are called mutators. Pure methods with
return type set are called dynamic frames. Purity is inherited by overriding
methods.

Predicates are special pure methods marked with predicate. More specif-
ically, a predicate is a boolean, pure method that can only be called from
other predicates and within class and method contracts. Contrary to other
method implementations, predicates are allowed to mention acc(o.f), o.shared ,
and o.locked .

Method Footprints. In addition to pre and postconditions, each method contract
contains a method footprint. A method footprint is a side-effect free expression
of type set. The footprint of a pure method (reads annotation) specifies the
locations that can potentially be be read by the method, while a mutator’s
footprint (writes annotation) specifies the locations that can be modified by
the method. More specifically, a mutator can only modify o.f if &o.f is in the
method’s footprint or if o was unallocated at the start of the method. Only
parameters and the variable this may occur free in method footprints.

To prove that a state change (i.e. field update or non-pure method invocation)
does not affect the return value of a pure method, one has to show that the
footprint of the state change is disjoint from the pure method’s footprint. To
preserve disjointness of footprints, constructors and mutators should specify how
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final class Counter {
private int count ;

monitorfootprint rep();
monitorinvariant inv();

Counter()
writes ∅;
ensures inv();
ensures getCount() = 0;
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ }

void increment()
requires inv();
writes rep();
ensures inv();
ensures getCount() = old(getCount()) + 1;
ensures newElemsFresh(rep());

{ count + +; }

pure int getCount()
requires inv();
reads rep();

{ return count ; }

predicate bool inv()
reads inv()?rep() : universe;

{ return acc(count) ∧ 0 ≤ count ; }

pure set rep()
requires inv();
reads rep();

{ return { &count }; }
}

class Session implements Runnable {
private Counter counter ;

Session(Counter c)
requires c.shared ;
writes ∅;
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ counter = c; }

void run()
{

synchronized(counter){
counter .increment();

}
}

predicate bool inv()
{ return acc(counter) ∧ counter �= null∧

counter .shared ; }

pure set rep()
{ return { &counter }; }

}

Counter c = new Counter();
share c;
new Thread(new Session(c)).start();
new Thread(new Session(c)).start();

Fig. 2. A revision of the program of Figure 1. The classes Counter and Session now
both hide their internal fields, and instead provide methods to query and update their
state.

they affect footprints. To this end, we introduce two new boolean expressions:
elemsFresh(e) and newElemsFresh(e). Both expressions can only be used
in postconditions. elemsFresh(e) states that the locations in e are fresh with
respect to the method pre-state, while newElemsFresh(e) states that each
location in e is either an element of old(e) or is fresh with respect to the method
pre-state.
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The program of Figure 2 successfully verifies. The contracts for the classes
Runnable and Thread which are needed for verification are shown in Figure 4 of
appendix B. Note that the methods run, inv and rep in class Session override
the corresponding methods in Runnable, and therefore they inherit the contracts
of their overridden methods.

3.2 Verification

We shortly highlight the most important changes in the verification approach
with respect to [5]. For details on the encoding of pure methods and method
footprints, we refer the reader to [5].

In [5], a (postcondition) axiom is generated for each dynamic frame, stating
that the set returned by the method only contains allocated locations. In this
paper, we generate an additional axiom stating that dynamic frames only re-
turn sets containing accessible locations. This axiom is used to deduce that the
monitor footprint of a newly acquired object does not overlap with any locations
accessible to the thread before entering the synchronized block.

Furthermore, whenever a predicate method requires an object to be accessible,
that is, whenever it contains a subexpression acc(o.f), we require &o.f to be
an element of the method’s reads clause. This allows predicates to be used in
monitor invariants.

3.3 Read-Write Locks

A read-write lock is a variant of a traditional lock, which may be concurrently
held by multiple reader threads, as long as there are no writers. For writer
threads, the read-write lock is exclusive. For example, in the program of ap-
pendix D a shared arraylist object is protected by a read-write lock. Multiple
threads can concurrently iterate over the elements in the list by acquiring the
read lock (synchronizedR). In previous incarnations of the programming model,
it is impossible to verify this program.

Supporting read-write locks requires only minor extensions to the program-
ming model and the annotations. More specifically, instead of associating an
access set with each thread, we associate with each thread a read and a write
set, the set of locations that can respectively be read or written by the corre-
sponding thread. acc(o.f) now means that &o.f is in both sets, while read(o.f)
signifies that &o.f is at least in the current thread’s read set. Moreover, each
class contract is extended with a read monitor footprint and a read monitor
invariant. The regular monitor invariant must imply the read monitor invariant,
and similarly the regular monitor footprint must be a superset of the read mon-
itor footprint. When acquiring the read lock of an object o, the locations in o’s
read monitor footprint are added to the thread’s read set, and one may assume
o’s read monitor invariant holds. And vice versa, when releasing a read lock, one
must establish the read monitor invariant, and the thread loses read permission
for the locations in the read monitor footprint.
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4 Related Work

The Extended Static Checker for Java [14] (ESC/Java) is a compile-time program
checker that attempts to find common errors, such as null dereferences and data
races, in Java programs. Similarly to VeriCool, ESC/Java relies on verification
condition generation and theorem proving. However, the tool trades soundness
for ease of use. For example, it assumes that the value of a shared location stays
unchanged if a method releases and then reacquires the lock that protects it,
ignoring the possibility that some other thread might have acquired the lock
and modified the location in the interim [15, page 91].

In his thesis, Kassios [6] describes a flexible approach to data abstraction and
framing based on dynamic frames. More specifically, Kassios uses specification
variables, similar to our pure methods, to achieve data abstraction. To solve the
framing problem, he proposes using dynamic frames to abstractly specify the
footprint of specification variables and the effect of mutator methods. Recently,
we showed how Kassios’ ideas can be incorporated in a program verifier for
a Java-like language based on first-order logic [5]. However, both [6] and [5]
consider only sequential object-oriented programs. In this paper, we extend the
solution described in [5] in order to handle concurrent programs. To the best of
our knowledge, this is the first paper combining dynamic frames and concurrency.

Various extensions of separation logic to concurrent programs have been pro-
posed [9,10,16,8,11]. In particular, Gotsman et al. [10] propose a variant of concur-
rent separation logic that supports an unbounded number of dynamically allocated
locks and threads, which is similar to our approach in many respects. For exam-
ple, the boolean expression acc(o.f) can be considered to be the counterpart of the
separation logic predicate o.f �→ in the sense that they both represent a permis-
sion to access the location &o.f . One difference between their approach and ours
is that they allow lock finalization, while we never allow a shared object to become
unshared. To achieve the same effect in our approach though, one could temporar-
ily wrap the unshared object in a shared object. Another difference is that we make
footprints explicit (typically via dynamic frames), while footprints are implicit in
separation logic. Gotsman et al. developed a detailed formalization and soundness
proof, but their approach has not been implemented in an automatic verifier.

Smallfoot [16,17] is an automatic verifier for concurrent separation logic geared
toward verification of concurrent programs that manipulate recursive data struc-
tures. Smallfoot can verify many highly concurrent programs that our tool can-
not. However, the tool relies on various built-in rules about list and trees. Our
tool has no built-in rules to reason about particular data structures, but instead
each class can define its own abstractions via pure methods.

Ábrahám-Mumm et al. [18] propose an assertional proof method for Java’s
reentrant monitors. Their approach supports class invariants, but these invari-
ants can only mention fields of this. Our approach has no such restriction.

A number of type systems have been proposed to prevent data races in object-
oriented programs. For example, Boyapati et al. [19] parametrize classes by the
protection mechanism that will protect their objects against data races. The type
system supports thread-local objects, objects protected by a lock, read-only object
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and unique pointers. Our approach not only rules out data races, but also supports
reasoning about richer properties such as object invariants.

The rules in our programming model that a lock’s monitor invariant must
hold whenever it is released and that it can be assumed to hold whenever it is
acquired, are taken from Hoare’s work on monitors [20].

This paper improves upon previous incarnations of the programming model
[2,3,4]. First of all, the present approach is more flexible in specifying the lo-
cations protected by an object’s lock. More specifically, [2,3,4] determine the
contents of the monitor footprint by means of rep annotations on fields, i.e. all
fields of all objects transitively reachable from an object o through rep fields
are protected by o’s lock. However, rep fields rule out sharing of memory lo-
cations (among different footprints). As a consequence, the concurrent iterator
program of Figure 7 of appendix D, where different iterators share the locations
in an array list’s footprint, cannot be verified by [2,3,4]. Secondly, the present
approach is more fine-grained in the sense that accessibility is tracked per loca-
tion instead of per object. This implies that different fields of an object can be
protected by different locks, which is not possible in previous versions. Finally,
we demonstrate how to combine the programming model with an approach to
data abstraction and framing based on dynamic frames. Data abstraction was
not considered in [2,3,4].

5 Conclusion

We propose an approach to the automatic verification of concurrent Java-like
programs. The cornerstone of the approach is a programming model for prevent-
ing both low-level and high-level races. Compared to previous incarnations of the
model, we are more flexible in specifying the locations protected by an object’s
lock. In addition, we combine the model with an approach for data abstraction
and framing based on dynamic frames [6,5]. To the best of our knowledge, this
is the first paper that combines dynamic frames and concurrency. We imple-
mented our approach in a tool, and used it to automatically verify several small
concurrent programs.

In the future, we plan to apply our approach in a larger case study.
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Appendix

A Translation of Expressions

TrEh �e.f� ≡ h[TrE
h �e�, f ]

TrEh �acc(e.f)� ≡ h[TrE
h �e�,accessible ][f ]

TrEh �{ &e.f }� ≡ { (TrE
h �e�, f) }

TrEh �e.shared� ≡ h[TrE
h �e�, shared ]

TrEh �e.locked� ≡ h[TrE
h �e�, locked ]

TrEh �e.m(e1, . . . , en)� ≡ #C.m(h, TrEh �e�, TrEh �e1�, . . . , TrE
h �en�)

DfE
h �e.f� ≡ DfE

h �e� ∧ TrEh �e� �= null ∧ h[TrE
h �e�, accessible ][f ]

DfE
h �acc(e.f)� ≡ DfE

h �e� ∧ TrEh �e� �= null
DfE

h �{ &e.f }� ≡ DfE
h �e� ∧ TrE

h �e� �= null ∧ h[TrE
h �e�, accessible ][f ]

DfE
h �e.shared� ≡ DfE

h �e� ∧ TrEh �e� �= null
DfE

h �e.locked� ≡ DfE
h �e� ∧ TrEh �e� �= null

DfE
h �e.m(e1, . . . , en)� ≡ DfE

h �e� ∧ DfE
h �e1� ∧ . . . DfE

h �en�∧
TrEh �e� �= null ∧ TrEh �Prem [e/this, e1/x1, . . . , en/xn]�

Fig. 3. Translation and definedness of expressions

B Contracts for Runnable and Thread

class Thread {
Thread(Runnable target)

requires target �= null ∧ target .inv();
writes target .rep();
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

void start()
requires inv();
writes rep();

predicate bool inv()
reads inv()?rep() : universe;

pure set rep()
requires inv();
reads rep();

}

interface Runnable {
void run()

requires inv();
requires ∀{Object o • ¬o.locked};

predicate bool inv()
reads inv()?rep() : universe;

pure set rep()
requires inv();
reads rep();

}

Fig. 4. The contracts for the interface Runnable and the class Thread
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C Translation of Statements

We assume expressions nested within statements are side-effect free.

TrS�x = new C(e1, . . . , en); � ≡
assert DfE

h �e1� ∧ . . . DfE
h �en�;

havoc newObject ;
assume newObject �= null ∧ ¬H[newObject , alloc] ∧ typeof (newObject) = C;
assume (∀q, f • (q, f) ∈ locationsOf (newObject) ⇒ ¬H[q, accessible][f ]);
oldH := H; havoc H; assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∨ (q, f) ∈ locationsOf (newObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ⇒ oldH[q, f ] = H[q, f ]);
assume (∀q • H[q, locked ] ⇔ oldH[q, locked ]);
assume H[newObject , alloc];
call C.ctr(newObject , TrE

h �e1�, . . . , TrE
h �en�);

x := newObject ;

TrS�e1.f = e2; � ≡
assert DfE

H�e1� ∧ DfE
H�e2�;

assert TrE
H�e1� �= null ;

assert H[TrE
H�e1�, accessible][f ];

H[TrE
H�e1�, f ] := TrE

H�e2�;

TrS�share e; � ≡
assert DfE

H�e�;
sharedObject := TrE

H�e�;
assert sharedObject �= null ∧ ¬H[sharedObject , shared ] ∧ monitorinvariant(H, sharedObject);
oldH := H; havoc H; assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , sharedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , sharedObject) ⇒

oldH[q, f ] = H[q, f ]);
assume (∀q • H[q, locked ] ⇔ oldH[q, locked ]);
assume H[sharedObject , shared ];

Fig. 5. Translation of statements
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Tr�synchronized(e){ s }� ≡
assert DfE

H�e�;
lockedObject := TrE

H�e�;
assert H[lockedObject , shared ] ∧ ¬H[lockedObject , locked ];
oldH := H; havoc H; assume successor(oldH ,H );
assume monitorinvariant(H, lockedObject);
assume (∀q, f • oldH [q, accessible][f ] ∨ (q, f) ∈ monitorfootprint(H, lockedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ⇒ oldH[q, f ] = H[q, f ]);
assume (∀q, f • (q, f) ∈ monitorfootprint(H, lockedObject) ⇒ ¬oldH [q, accessible][f ]);
assume (∀q • q �= lockedObject ⇒ H[q, locked ] ⇔ oldH[q, locked ]);
assume H[lockedObject , locked ];
Trs�s�
assert monitorinvariant(H, lockedObject);
oldH := H;
havoc H;
assume successor(oldH ,H );
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , lockedObject) ⇔

H[q, accessible][f ]);
assume (∀q, f • oldH [q, accessible][f ] ∧ ¬(q, f) ∈ monitorfootprint(oldH , lockedObject) ⇒

oldH[q, f ] = H[q, f ]);
assume (∀q • q �= lockedObject ⇒ H[q, locked ] ⇔ oldH[q, locked ]);
assume ¬H[lockedObject , locked ];

Fig. 6. Translation of statements (cont.)
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D Concurrent Iterator

final class ArrayList {
readmonitorfootprint repR();
readmonitorinvariant invR();

int count; Object [] items;
. . .
pure Object get(int i);

requires invR() ∧ 0 ≤ i < size();
reads repR();

{ return items[i]; }

pure int size();
requires invR();
reads repR();
ensures 0 ≤ result;

{ return count ; }

predicate bool invR()
reads invR()?repR() : universe;

{ return read(count) ∧ read(items)∧
items �= null ∧ read(items.elems)∧
0 ≤ count ≤ items.length; }

pure set repR()
requires invR();
reads repR();

{ return {&count , &items} ∪ elems(items); }
}

class Iterator {
ArrayList list ; int index ;
. . .
Object next()

requires inv() ∧ hasNext();
writes rep();
ensures inv() ∧ list() = old(list());
ensures newElemsFresh(rep());

{ return list .items[index + +]; }

pure bool hasNext()
requires inv();
reads rep() ∪ list().repR();

{ return index < list .count ; }

pure ArrayList list()
requires inv();
reads rep();

{ return list ; }

predicate bool inv()
reads inv()?

(rep() ∪ list().repR()) : universe;
{ return list �= null ∧ list .invR()∧

0 ≤ index ≤ list .count∧
&list �∈ list .repR()∧
&index �∈ list .repR(); }

pure set rep()
requires inv();
reads rep();

{ return {&list , &index}; } }

Fig. 7. The iterator pattern. By using read locks, multiple threads can simultaneously
iterate over a shared array list.
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class Session implements Runnable {
private ArrayList list ;

Session(ArrayList l)
requires l.shared ;
writes ∅;
ensures inv();
ensures elemsFresh(rep());
ensures ¬this.shared ;

{ list = l; }

void run()
{

synchronizedR(list){
Iterator iter = new Iterator (list);
while(iter .hasNext ())

loopinvariant iter .inv() ∧ newElemsFresh(iter .rep())∧
iter .list() = old(iter .list());

writes iter .rep();
{ iter .next(); }

}
}

predicate bool inv()
{ return acc(counter ) ∧ counter �= null ∧ counter .shared ; }

pure set rep()
{ return { &counter }; }

}

Fig. 8. The iterator pattern (cont)
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Abstract. Runtime security policy enforcement systems are crucial to
limit the risks associated with running untrustworthy (malicious or bug-
gy) code. The inlined reference monitor approach to policy enforcement,
pioneered by Erlingsson and Schneider, implements runtime enforcement
through program rewriting: security checks are inserted inside untrusted
programs.

Ensuring complete mediation – the guarantee that every security-
relevant event is actually intercepted by the monitor – is non-trivial
when the program rewriter operates on an object-oriented intermedi-
ate language with state-of-the-art features such as virtual methods and
delegates.

This paper proposes a caller-side rewriting algorithm for MSIL – the
bytecode of the .NET virtual machine – where security checks are in-
serted around calls to security-relevant methods. We prove that this al-
gorithm achieves sound and complete mediation and transparency for a
simplified model of MSIL, and we report on our experiences with the
implementation of the algorithm for full MSIL.

Keywords: security policy enforcement, inline reference monitor.

1 Introduction

In today’s networked world, code mobility is ubiquitous. Applications can be
downloaded over the internet, or received as an attachment of emails. This sup-
port for applications from potentially untrustworthy sources comes with a seri-
ous risk: malicious or buggy applications can lead to denial of service, financial
damage, leaking of confidential information and so forth.

One important class of countermeasures addresses this risk by monitoring the
application at run time, and aborting it if it violates a predefined security policy.
The events monitored are called security-relevant events, and they typically are
operating system calls, or platform API method calls.

This paper is about such policy enforcement systems that are rich enough to
enforce policies specified by means of a security automaton [1], an automaton
that defines what sequences of security-relevant events are acceptable. Several
such systems have been designed and prototyped [2,3,4], and security automata
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have been shown to express exactly the policies enforceable by run-time moni-
toring [1]. The code access security architectures present in Java and .NET are
an instance of such systems [2].

In standard policy enforcement systems, monitoring applications is integrated
into the execution system or the trusted libraries. This makes it fairly easy to
show complete mediation [5], the property that the monitor sees every occurrence
of a security-relevant event. This paper zooms in on the inlined reference mon-
itor (IRM) [6] approach, that rewrites untrusted applications and embeds the
monitor directly into the application itself. Ensuring complete mediation is non-
trivial when the program rewriter operates on an object-oriented intermediate
language with state-of-the-art features such as virtual methods and delegates.

This paper proposes a caller-side rewriting algorithm for MSIL – the bytecode
of the .NET virtual machine – where security checks are inserted around calls
to security-relevant methods. We prove that this algorithm achieves sound and
complete mediation and transparency (the property that the behavior of the
rewritten program does not change if it is compliant with the enforced policy)
for a simplified model of MSIL, and we report on our experiences with the
implementation of the algorithm for full MSIL.

Section 2 elaborates on the problem statement. In Section 3, we introduce a
simplified model of MSIL and the .NET Common Language Runtime (CLR) –
the .NET virtual machine, and we propose a program rewriter that achieves
complete mediation. Sections 4 and 5 explain how this system can be extended
to support virtual method dispatch and delegates. In Section 6, we describe the
implementation of our program rewriter for the full .NET CLR. Finally, we cover
related work and conclude in Sections 7 and 8.

2 Problem Statement

The design space for IRM systems is rich, and different designs have different
advantages and disadvantages. In particular, the problem of proving complete
mediation is harder for some designs than for others. We discuss some of the
design parameters, and motivate our design choices.

A first important design choice is the security-relevant events. Events can
range from individual bytecode or machine instructions [7] over operating sys-
tem calls [8] to Java method calls [6]. The trade-offs of these choices are discussed
in [7], and broadly speaking the conclusion is that fine-grained monitoring al-
lows expressive policies, but coarser-grained monitoring makes policies simpler
to understand and write, and it is sufficiently expressive for practical purposes.
Our system monitors method invocations.1

Furthermore, the abstraction level of the method calls monitored is important.
Figure 1(a) shows a simplified architecture for a managed .NET application.
The application calls methods of the API of the platform library, for instance a
method to send data over a network socket. The implementation of this method
1 A method invocation is when the execution enters a new method. Method calls are

first dispatched to find the actual target method before they are invoked.
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Application

Platform Libraries

Runtime System

Operating System

Abstraction level

API calls

Native calls

Syscalls

(a) Abstraction level

App’

Platform Libraries

Policy

(b) Rewritten application

public void ClientMethod(){
//security checks
Event();
//security checks

}
(c) caller-side

public void Event(){
//security checks
//original code
//security checks

}
(d) callee-side

Fig. 1. Design decisions for a policy enforcement systems

calls a lower-level native method, implemented in the runtime system. The native
methods in turn performs system calls.

A second important design choice is whether to monitor the high-level meth-
ods that the application calls directly, or the low-level methods that are the most
primitive abstraction of the system resources. Current research usually expresses
security policies in terms of low-level methods [6,3]. This makes it easy to write
policies that limit access to system resources, for instance limit the amount of
network traffic, or file access. The higher level methods need not be monitored
directly, because their implementations will call the lower level methods.

Unfortunately, as current system libraries can be complex, it can be hard for
application developers to determine the security-relevant behavior of their appli-
cation, since they make use of high-level methods. Furthermore, policy writers
often want to selectively allow certain high-level methods, even if it executes a
low-level method that is forbidden (e.g. using a logging method, even if access
to the file system is not allowed).

In this paper, we use the high-level platform API methods to write policies.
Security-relevant events are invocations of methods defined in the trusted sys-
tem libraries from inside the untrusted application. This approach is similar to
monitoring unmanaged applications at the boundary between kernelspace and
userspace. In other words, we monitor the control flow transitions between Ap-
plication and Platform Libraries in Figure 1(a).

A third design parameter is where to insert security checks. With callee-side
program rewriting, the rewriter inserts checks inside the body of security-relevant
methods (See Figure 1(d)). In a safe execution mechanism, it is fairly easy to
show that untrusted applications can not circumvent security code. On the other
hand, selectively allowing calls based on the call site is much harder. Since we
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only want to monitor calls originating from the (untrusted) application, callee-
side program rewriting is troublesome. Also, the rewriter needs to modify the
trusted system libraries and this can be impossible, for instance when they are
in ROM on a mobile device, or when a third party performs the inlining of the
application as a service (as proposed in the S3MS project [9]).

In this paper, we use caller-side program rewriting, where the rewriter inserts
checks at the call site (See Figure 1(c)).

Finally, a fourth design choice is what to inline: the policy enforcement code
itself, or just a call to an external component that implements the policy. Both
approaches are used in other systems, and the differences between the two ap-
proaches are minor. For convenience reasons – it is easier to formulate the com-
plete mediation property we want to prove – we inline calls to a separate Policy
Decision Point (PDP).

Figure 1(b) shows how the untrusted application is transformed into a new
application and this new application invokes a method in the PDP before and
after each security-relevant event.

Illustration of the Issues

IRM’s are a powerful policy enforcement mechanism, but showing that a mon-
itored application cannot subvert the security checks can be complex, in par-
ticular for IRM’s based on caller-side rewriting. The security checks are inlined
statically, and executed before the method call has been dispatched. In modern
execution systems, this raises a number of important challenges:

– When using virtual methods or interfaces, the target method can usually
not be determined statically. At runtime, the target is determined using
the runtime type of the target object. An attacker could try to circumvent
the security policy by casting an object to its base type and executing a
security-relevant method using virtual dispatch. Alternatively, an attacker
might inherit from the trusted system libraries or override the behavior of a
security-relevant method.

– With delegates, the situation is even worse. A delegate points to a set of
methods, and methods can be added to or removed from this set at runtime.
Invoking the delegate invokes all methods in the set. An attacker could try
to hide a call to a security-relevant method by adding it to a delegate and
calling this delegate.

In short, achieving complete mediation with a caller-side program rewriter is
much more challenging than using callee-side program rewriter. This is the key
problem addressed in this paper.

3 Base System

In this section, we prove sound and complete mediation and transparency for a
simplified model of the .NET CLR [10].
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3.1 Execution System

Our formal model of the .NET CLR is based on Fruja’s formalization [11]. Our
model in this section supports assemblies (the .NET components, similar to
Java’s jar files), classes with (possibly static) non-virtual methods, and excep-
tions. Later sections discuss the extension to virtual methods. We do not model
interfaces, value types or multithreading. We briefly describe the formal model,
but since it is relatively straightforward, the reader is referred to [11] for details.

The execution system is a virtual machine that loads two assemblies: the
untrusted application (U), and the trusted platform libraries (T). We assume
that U has a method main without input arguments to start the execution. Each
assembly contains a set of classes. A type is a pair consisting of an assembly and
a class name defined in that assembly.

A method reference is a pair of a type and a method name (written as Type ::
MethodName). The function retType maps a method reference to the type of
the return value (or the special return type void). locTypes maps a method
reference to a list of types for the local variables of that method. The function
argTypes defines a list of types for the arguments of a method reference. If the
method is an instance method, the first argument is the implicit this argument.
Finally, the function code maps a method reference into a list of instructions,
the bytecode representation of the body of the method. Table 1 summarizes the
instructions that we will need in this paper. The virtual machine supports more
instructions, but their semantics is straightforward.

An exception handler is a five-tuple defining the position of the beginning
(inclusive) and end (exclusive) of the try block, the type of exception that is
caught, and the position of the beginning and end of the catch block of the
handler. The function excHa maps a method reference into a list of exception
handlers.

The execution state of the virtual machine consists of a heap, a list of activa-
tion records and an exception record. The heap is modeled as a finite map from
addresses to values. heapLookup(heap, address) looks up the value at a given
address in the heap. Furthermore, heapUpdate(heap, address, value) returns a
new heap that results from replacing the content of heap at the given address
by the given value. An activation record is a five-tuple consisting of the current
program counter, a list of addresses of the local variables, a list of addresses for
the arguments, a stack of values (the evaluation stack) and the method reference
of the method that is being executed. The exception record is a pair containing
the currently active exception, and the next exception handler that will be tested
to handle an exception. In our formalization, the active exception is always a
value of the type (T,Exception) or (T, SecurityException)(where T is the trusted
assembly).

Operational semantics
In a given state, instr denotes the current instruction that will be considered by
the execution system. It is shorthand for code(mref)[pc] with mref the method
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Table 1. Instructions

instruction explanation

ldc.x load a constant on the evaluation stack
ldloc i load the value of the local variable at index i on the stack
stloc i store the top value of the stack in the local variable at index i

and pop it from the stack
brtrue k branch to the instruction at index k if the top value of the

stack is true and pop it from the stack
br k unconditional branch to the instruction at index k

call mref call the method mref using the arguments on the stack (and
remove them from the stack) and put the return value on the
stack (if return type not void)

ret return from a method (and use the top value of the stack as
return value if return type not void)

throw throw the top value of the stack as an exception
newobj mref create a new object using the constructor mref and put a

reference to the new object on the stack

that is currently being executed (the top frame of the activation records), and
pc the current program counter within this method.

An execution state is in normal execution mode if the active exception of the
exception record is null. Table 1 informally explains the instructions that are
relevant for our algorithm, and Appendix A defines the operational semantics
for the instructions formally.

An execution state is in exception handling mode if it is not in normal exe-
cution mode. Appendix A also defines the operational semantics for exception
handling. Exception handling mode is entered with the throw instruction, and
it starts by looking for suitable exception handlers in the current method. An
exception handler is suitable if the current program counter is inside the scope
of the try block, and if the type of the exception is a subtype of the type of the
exception handler. If a suitable handler is found, the evaluation stack is cleared
and the active exception is pushed onto the stack. Execution continues in normal
mode with the first instruction of the catch block of the exception handler.

If all exception handlers of the current method have been considered, the
exception is propagated to the caller of the current method, and the execution
mechanism continues searching at the first handler of the caller.

3.2 The Inlining Algorithm

Recall from Figure 1(b) that an inlining algorithm takes an untrusted assembly
App as input, and it outputs a new assembly App′ that notifies the PDP of all
security-relevant events. The security-relevant events are the entering into and
exiting (both normally or exceptionally) from security-relevant methods. The
security-relevant methods are a subset (designated by the policy writer) of the
methods defined in the trusted assembly. Notification of the PDP is done by
calling so-called policy methods in the PDP.
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Definition 1 (Policy methods). The functions before, after and excep map
a security-relevant method mref onto the corresponding policy methods
before(mref), after(mref) and excep(mref) that are called respectively before
entering mref , after successful return, and after exceptional return.
before(mref) has the same argument types as mref , after(mref) has an ad-
ditional parameter for the return value, and excep(mref) has an additional
parameter for the exception.

In our simplified model, we require policy methods to be part of the trusted as-
sembly. They throw a SecurityException when the policy is violated, and return
void otherwise. Policy methods are not allowed to call back into the untrusted
assembly. The untrusted application (before inlining) should not contain any
calls to policy methods.

Our inlining algorithm is defined in Figure 2. The algorithm goes through
the instruction list of all methods in the untrusted assembly, looking for call
instructions to a security-relevant method. Each such call instruction is replaced
by a block of code generated using the generateCode function, defined below. We
say that such call instruction has been processed by the inliner. For simplification
purposes, we do not intercept constructor calls, but their treatment is identical
to a call to a static method with the new object as return value.

Definition 2 (generateCode). Given an instruction instr of the form call
mref , a list of types localvars, a list of exception handlers excha and the index of
the instruction i, the function generateCode(instr, localvars, excha, i) returns

Body = (List(Instr),List(Type), List(ExceptionHandler))

inlinebody : Map(Body,Body)
inlinebody((body, localvars, excha)) = inlinebodyhelp([], body, 0, localvars, excha)

inlinebodyhelp(left, [], , localvars, excha) =
return (left, localvars, excha)

inlinebodyhelp(left, right, i, localvars, excha) =
right == instr, right′

if (instr == call mref and mref is a SRM) {
(newCode, localvars′, newExcha) = generateCode(instr, localvars, excha, i)
n = #newCode
left′ = patchBranchTargets(left,n, i)
right′′ = patchBranchTargets(right′, n, i)
left′′ = left′, newCode
excha′ = newExcha, patchExchaPcs(excha,n, i)
return inlinebodyhelp(left′′, right′′, i + n, localvars′, excha′)

} else {
left′ = left, instr
return inlinebodyhelp(left′, right′, i + 1, localvars, excha)

}

Fig. 2. Program rewriter algorithm
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stloc m + n
. . . 1. Store arguments
stloc m

ldloc m
. . . 2. Reload arguments
ldloc m + n

call before(mref) 3. Call before method
try{

ldloc m
. . . 4. Reload arguments
ldloc m + n

call mref 5. Call original method
stloc m + n + 1 6. Store return value

ldloc m
. . . 7. Reload arguments and return value
ldloc m + n + 1

call after(mref) 8. Call after method
ldloc m + n + 1 9. Reload return value
br end 10. goto end

} catch (SecurityException) {
throw 11. Rethrow exception

} catch (Exception) {
stloc m + n + 2 12. Store exception

ldloc m
. . . 13. Reload arguments and exception
ldloc m + n
ldloc m + n + 2

call exception(mref) 14. Call exception method
ldloc m + n + 2 15. Reload exception
throw 16. Rethrow exception

end: }

Fig. 3. Generated code fragment where n is the number of arguments of the target
method, and m is the number of pre-existing local variables in the method that is
being rewritten.

a block of code defined by the template in Figure 3, a modified list of types for
local variables and a modified list of exception handlers.

The insertion of the code fragments generated by generateCode changes the
locations of the original instructions in the method being rewritten. Since these
locations are used in branch instructions and in exception handlers, we need
to patch these. So the inlining algorithm patches branch targets and exception
handlers using the function patchLocation(n, i) = λloc.if (loc > i) then loc +
n − 1 else loc, where i is the location of the call being processed, and n is the
size of the generated code block being inserted.
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We discuss in more detail the block of code generated by generateCode
(Figure 3). First, we generate stloc instructions to store the arguments that
are on the evaluation stack into new local variables. Because these variables are
new, and this is the only place in the generated code where values are stored
into these variables, their value does not change after this point. This ensures
that each time the variables are loaded on the stack, the relevant values on the
top of the stack are the same values as the values initially on the stack.

Next, we use ldloc instructions to load the arguments on the stack again, and
a call instruction to invoke the before method of the policy.

The remaining part of the code is a try catch structure. In the try scope, we
first generate instructions to load the arguments on the stack and call the original
security-relevant method. Then we store the return value in a local variable (if
the return type is not void). For the after method of the policy, we generate
instructions to load the arguments and the saved return value on the stack and
to call the after method. Finally, we load the return value on the stack again,
and we branch out of the try block.

The type of the first exception handler is SecurityException. Because we as-
sume that security-relevant methods do not throw security exceptions, this ex-
ception comes from the after method. We generate code to simply rethrow the
original exception.

The second exception handler catches any type of exceptions. Because we
assume that the policy methods are total, this exception is raised inside the
security-relevant method and the exceptional method of the policy must be ex-
ecuted. We generate instructions to store the exception into a local variable,
reload the arguments, reload the exception, call the exceptional method of the
policy and finally reload and rethrow the exception.

3.3 Properties of the Inlining Algorithm

The first property we consider is complete mediation [5]: every security-relevant
event is seen by the monitor.

We say that a method invocation, return or exceptional return is observable
when it crosses the boundary between the untrusted assembly and the trusted
assembly. The function observable(mref, mref ′) returns true if one of its ar-
guments is defined in the trusted assembly, and the other one in the untrusted
assembly.

An abstract trace of a program is a (possibly infinite) list of observable method
invocations, returns and exceptional returns.

Definition 3 (Abstract trace). The abstract trace of a program is the list of
observable method invocations, returns and exceptional returns that occur when
executing the main method of the program.

Figure 4 shows how to compute the abstract trace, based on the operational
semantics.

For simplification purposes, we assume that security-relevant methods do
not call back into untrusted applications and they terminate. Furthermore, we
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(H, S, E) → (H ′, S′, E′)
#S′ = #S + 1 S′ = , (pc, , argAdr, , mref) S = , ( , , , , oldmref)

code(oldmref)[pc] �= newobj observable(mref, oldmref)

argTypes(mref) ==
−→
A 1..n

−→v = heapLookup(H ′, argAdr)

trace(H,S, E) = Enter(mref,−→v ), trace(H ′, S′, E′)

(H, S, E) → (H ′, S′, E′) #S′ = #S − 1 S = , (pc, , , evalStack, mref)
S′ = , ( , , , , oldmref) observable(mref, oldmref) E = (null, )

code(mref)[pc] = ret retType(mref)! = void evalStack = evalStack′, v

trace(H,S, E) = Return(v), trace(H ′, S′, E′)

(H,S, E) → (H ′, S′, E′) #S′ = #S − 1
S = , (pc, , , , mref) S′ = , ( , , , , oldmref) observable(mref, oldmref)

E = (null, ) code(mref)[pc] = ret retType(mref) == void

trace(H,S, E) = Return, trace(H ′, S′, E′)

(H,S, E) → (H ′, S′, E′) #S′ = #S − 1 S = , ( , , , , mref)
S′ = , ( , , , , oldmref) observable(mref, oldmref) E = (v, ) v! = null

trace(H,S, E) = Exception(v), trace(H ′, S′, E′)

(H,S, E) → (H ′, S′, E′) #S′ = #S

trace(H,S, E) = trace(H ′, S′, E′)

Fig. 4. Computation of the trace of a program

assume that security-relevant methods always return a value to keep the prop-
erties simple.

Definition 4 (Complete mediation). An abstract execution trace of an un-
trusted assembly program satisfies complete mediation if and only if for each
index i in trace such that trace[i] = Enter(mref, vals) and mref is security-
relevant:

– trace[i-2]=Enter(before(mref),vals) and trace[i-1]=Return
– trace[i+1]=Return(val) implies trace[i+2]=Enter(after(mref),vals . val)
– trace[i+1]=Exception(val) implies trace[i+2]=Enter(excep(mref),vals . val)

We prove that our inliner always produces programs with completely mediated
traces. First we need some technical lemmas.

Lemma 1 (No jumps into inlined code). For every untrusted assembly P ,
let P ′ = inline(P ). For all possible runs of P ′, control flow can enter a code
block inserted during inlining only through the first instruction of the block.

Proof. The patching of the branch targets makes sure that there are no jumps into
the generated code, thus control flow must enter through the first instruction.
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Lemma 2 (Complete replacement). Any call instruction that invokes a se-
curity-relevant method at run time, has been processed by the inliner.

The proof of this lemma is trivial in this execution system. However, this is the
key lemma that breaks when adding delegates or virtual method dispatch. Later
sections discuss how to maintain this lemma in the presence of delegates and
virtual calls, and this will require improvements to the inliner.

Lemma 3 (Abstract trace of generated code). The code blocks output by
generateCode can only generate the following traces:

1. Enter(before(mref), vals), Exception(exc),. . . with exc a SecurityException.
2. Enter(before(mref), vals), Return, Enter(mref, vals), Exception(exc),

Enter(excep(mref), vals . exc), Exception(exc2), . . . with exc not a SecurityExcep-
tion and exc2 a SecurityException.

3. Enter(before(mref), vals), Return, Enter(mref, vals), Exception(exc),
Enter(excep(mref), vals . exc), Return, . . . with exc not a SecurityException.

4. Enter(before(mref), vals), Return, Enter(mref, vals), Return(val),
Enter(after(mref), vals . val), Exception(exc), . . . with exc a SecurityException.

5. Enter(before(mref), vals), Return, Enter(mref, vals), Return(val),
Enter(after(mref), vals . val), Return, . . .

Proof. Taking into account the restrictions that (1) policy methods do not call
back into the untrusted assembly, and (2) policy methods can only throw Secu-
rityExceptions or return void, the proof is straightforward.

Theorem 1 (Complete mediation of the algorithm). For every untrusted
assembly P , let P ′ = inline(P ). The abstract trace trace′ of P ′ satisfies complete
mediation.

Proof. For each Enter(mref, vals) in trace′ where mref is security-relevant :

1. Using the computation rules for traces (Figure 4), the Enter can only be
caused by a call instruction.

2. By Lemma 2, each call instruction that can potentially result in invoking a
security-relevant method has been replaced by a block of generated code.

3. Using Lemma 1, the only way to start the execution of the generated block
of code is by starting at the first instruction.

4. According to Lemma 3, the generated code can only lead to five possible
traces. Because we have an Enter(mref, vals) in the trace, trace 1 is not
possible. In all other cases complete mediation holds by Definition 4.

The second property we consider is sound mediation.

Definition 5 (Sound mediation). An abstract execution trace of an untrus-
ted assembly program satisfies sound mediation if and only if for each index i
in trace:

– trace[i]=Enter(before(mref),vals) and trace[i+1]=Return implies
trace[i+2]=Enter(mref, vals)
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– trace[i]=Enter(after(mref),vals . val) implies
trace[i-2]=Enter(mref, vals) and trace[i-1]=Return(val)

– trace[i]=Enter(excep(mref),vals . val) implies
trace[i-2]=Enter(mref, vals) and trace[i-1]=Exception(val)

Theorem 2 (Sound mediation of the algorithm). For every untrusted
assembly P , let P ′ = inline(P ). The execution trace′ of P ′ satisfies sound
mediation.

Proof. Assuming that P did not contain any calls to the policy before rewriting,
all calls to the policy in P ′ come from inside the generated code block. Using
the generated traces (Lemma 3), completing the proof is trivial.

The third property we consider is transparency: a policy enforcement system
is transparent if it has no observable effect on programs that satisfy the policy.
We formalize this by considering the effect when inlining calls to policy methods
that do nothing, they return immediately. We call such methods passive.

Definition 6 (Equality modulo policy calls). Two abstract execution traces
trace and trace′ are equal modulo policy calls if and only if they are equal after
removing all calls to and returns from policy methods.

Definition 7 (Transparency). Let I be an inlining algorithm. Let P be a
program, and let P ′ be the inlining of P with I using only passive policy methods.
I is transparent if, for all such P , the trace of P ′ is equal modulo policy calls to
the trace of P .

Clearly, if policy methods are non-passive, a program may behave differently
after inlining. In general, the desirable situation is that policy methods are in-
distinguishable from passive policy methods until the untrusted program violates
the policy.

Theorem 3 (Transparency of the algorithms). The inlining algorithm in
Figure 2 is transparent.

The proof of this theorem, an induction over evaluation steps of the original
program, can be found in an extended version of this paper, published as a
technical report [12]. The key observation is that the code blocks inserted by
the inliner (Figure 3) have no observable effect on the traces of the program
if the policy methods are passive. First, there is a strong relationship between
the static structure – instructions, exception handlers, and variables of method
bodies – of P and P ′. Over this structural relationship, we define the notion of
structural equivalence of an execution state of P and P ′. We prove that for each
execution state reachable in k steps in P , there exists an execution state that is
reachable in l ≥ k steps in P ′ that is structurally equivalent and the traces to
reach these states are equal modulo calls to the policy.



252 D. Vanoverberghe and F. Piessens

4 Virtual Methods

To support virtual method calls in our model of the .NET CLR, the following
extensions are needed. The VM keeps track of a map of object references to their
actual type (the function actualT ypeOf). The new instruction callvirt performs
a virtual call: it looks up the method to be invoked dynamically based on the
run-time type of the receiver, and then behaves like a regular call. Figure 11 in
the appendix gives the evaluation rule for the callvirt instruction.

If our inliner would treat callvirt in the same ways as call, complete mediation
would break. There are three issues to be dealt with.

First, lemma 2 would break. Suppose a security-relevant method B :: m over-
rides a non-security-relevant method A :: m in a superclass A (Figure 5). A
virtual call with static target A :: m would not be processed by the inliner, yet
it could lead to an invocation of B :: m at run time.

A

public virtual void m()

B

public override void m()

Trusted Libraries

Fig. 5. Violating complete replacement

We deal with this first issue by requiring that the set of security-relevant
methods is upward closed.

Definition 8 (Upwards closure of a set of methods). A set of methods is
upwards closed if and only if no method in the set overrides a method that is not
in the set.

In practice, this is not a real restriction, as methods can always be added to the
set of security-relevant methods, even if the policy does impose constraints on
them.

The second issue arises when inheriting security-relevant methods. Suppose
A :: m is a security-relevant method, and the untrusted assembly creates a
subclass C of A that does not redefine m (Figure 6). Then a call that statically
looks like C :: m is actually a call to A :: m. Clearly, we can not require C :: m to
be in the set of security-relevant methods, as it is in the untrusted application,
and the policy writer typically does not even know it exists.

We address this issue by forbidding inheritance of security-relevant methods
in the untrusted assembly. Again, this is no restriction, as overriding is allowed,
and the untrusted application could override the security-relevant method and
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A

public virtual void m()

C

Trusted Libraries

Fig. 6. Inheriting security-relevant methods

public void BeforeMDispatcher(A target) {

if(target is B) {

if(target is D) { BeforeDM (target); }

else { BeforeBM (target); }

}

else if(target is C) { BeforeCM (target); }

else { BeforeAM (target); }

}

A

m()

B

m()

Trusted Libraries

C

m()

D

m()

Fig. 7. Dispatching methods

then simply do a base call if the same behavior as the original method is desired.
In fact, such a transformation could even be done automatically when no redef-
inition is found. The base call in the transformed program will be recognized by
the inliner as a statically bound call to a security-relevant method.

The third and last issue to address is how to deal with dynamic dispatch to
policy methods. Since the method called is determined dynamically, the determi-
nation of the appropriate policy methods now also needs to be done dynamically.
We handle this by creating a dispatching method for each virtual method that
is security-relevant (See Figure 7). The dispatching method uses runtime tests
on the actual type of the target to determine the actual method that will be
invoked. If this target method is security-relevant, then the dispatching method
calls the corresponding policy method. Otherwise, it returns from the dispatch-
ing method. The program rewriter now inserts calls to these dispatching methods
instead of the actual policy methods.

With these three extensions, the resulting inliner is completely and soundly
mediating and transparent in the presence of virtual calls.

5 Delegates

Delegates are essentially type safe function pointers. A delegate encapsulates
a set of method references of the same signature as the delegate. Calling the
delegate invokes all the methods in the set. A delegate can be passed on to other
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code where it is possible to call the delegate without statically knowing its target
methods. Therefore delegates are challenging for a caller-side inliner.

To maintain the complete mediation property of our inliner, we enforce the
property that the untrusted application never holds a reference to a delegate
that contains a pointer to a security-relevant method. By consequence, a call to
a delegate is never a call to a security-relevant method.

First, we extend the program rewriter to deal with the case where the un-
trusted assembly creates delegates. To create a delegate containing a method
pointer, an application must first load the method pointer on the stack (using
the ldftn or ldvirtftn instruction), and then it must call a Delegate subclass
constructor. When the program rewriter parses an attempt to load a security-
relevant method pointer on the stack, it creates a new wrapper method inside
the application that does a normal call to the security-relevant method, and a
pointer to this wrapper method is pushed on the stack. Hence the delegate will
not point to the security-relevant method, but to the wrapper method. The pro-
gram rewriter transforms the body of the wrapper method to insert calls to the
policy, thus preserving complete mediation.

Second we need to impose a constraint on the trusted libraries: no method in
the trusted API should create delegates that contain security-relevant methods
and pass them to the untrusted assembly in any way. For the security-relevant
methods we have considered so far, the trusted libraries never create delegates
that contain security-relevant methods.

With these extensions, our program rewriter is soundly and completely me-
diating and transparent, even in the presence of delegates.

6 Implementation

The research reported on in this paper is done in the context of the project
Security of Software and Services for Mobile Systems (S3MS) [9]. The inlining
algorithm described in this paper has been implemented for the full .NET Frame-
work, and for the .NET Compact Framework running on mobile devices such as
smartphones. We used the Mono.Cecil [13] libraries to parse and generate MSIL.

The execution system we describe in this paper hides a part of the complex-
ity of the real .NET CLR. While implementing our approach, we encountered
some challenging issues (in addition to the ones we already discussed). For ex-
ample, the real CLR forbids entering a protected region (a try block) with a
non-empty evaluation stack and it resets the evaluation stack when leaving a
protected region. Our approach inserts new try-catch handlers, thus we store
the entire evaluation stack before entering the try block, instead of just saving
the arguments for the security-relevant method. To do so, we implemented a
simple one-pass data flow analysis to compute the types on the stack. We store
the values on the stack in local variables, and reload them after the catch-blocks.

Furthermore, the real CLR forbids entering a protected region when the
current object is not fully initialized in constructors. Initialization statements
for fields are executed before an object is fully initialized. If these statements
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use security-relevant methods, the program rewriter inserts try-catch handlers
and the current object is not fully initialized upon entering the try block. We
solved this issue in our implementation by generating wrapper methods for these
security-relevant methods (like we did with delegates).

Our experience with the implementation is promising. The performance over-
head of the inlining is very small (this confirms performance measurements done
for other IRM’s [2]), and the inliner can handle real-world applications that are
used as case studies in the S3MS project.

7 Related Work

Both the current Java Virtual Machine [14] and Microsofts Common Language
Runtime [10] use stack inspection to enforce security policies on untrusted code.
The security policies that can be enforced in our approach are more flexible, since
the entire history of events can be used. Resource constraints are an example of
the kind of policies that are not enforceable using stack inspection.

SASI [7] and PoET/PSLang [6] are two policy enforcement tools based on
security automata [1]. Both techniques are based on inline reference monitors.
Sasi’s event system is very powerfull, as arbitrary machine instructions can be
monitored, but it has a higher performance impact. PoET/PSLang targets Java
applications and Erlingsson and Schneider have shown that it can be used to
enforce stack inspection based policies, and that the performance is competi-
tive [2]. In contrast with our approach, they make no claims about complete
mediation or transparency.

Naccio [4] also monitors security-sensitive operations, but instead of inserting
instructions inside the application or the system libraries, a new wrapper library
is created that enforces the security policy and delegates control back to the
original libraries.

Polymer [3] is a policy enforcement system based on edit automata [15]. To
master the complexity of policies, Polymer supports composition of complex
security policies using smaller building blocks. In contrast with our approach,
polymer uses callee-side rewriting to enforce security policies.

The work in this paper can been seen as a particular instantiation of As-
pect Oriented Programming [16] targeting security policy enforcement on un-
trusted code. Because our rewriting algorithm is much simpler than the weaving
mechanisms in full AOP, it is easier to prove correctness.

The abstract traces in our system are similar to the fully abstract trace
semantics of JavaJr [17].

8 Conclusions

In this paper, we propose a caller-side rewriting algorithm for MSIL – the byte-
code of the .NET virtual machine – where security checks are inserted around
calls to security-relevant methods.
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The algorithm has been implemented and can deal with real-world .NET
applications. Moreover, the algorithm has been proven correct for a simplified
model of MSIL and the .NET virtual machine. To the best of our knowledge,
this is the first provably correct inlining algorithm for an intermediate language
that supports both virtual methods and delegates.
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Appendix

A Operational Semantics

S = S′, (pc, locAdr, argAdr, evalStack, mref) instr = ldc.x v

evalStack
′ = evalStack, v S

′′ = S
′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E)→ (H, S
′′

, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = ldloc i adr = locAdr[i] v = heapLookup(H, adr)

evalStack′ = evalStack, v S′′ = S′, (pc + 1, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = stloc i evalStack = evalStack

′
, v adr = locAdr[i]

H′ = heapUpdate(H, adr, v) S′′ = S′, (pc + 1, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H′, S′′, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = ldarg i adr = argAdr[i] v = heapLookup(H, adr)

evalStack′ = evalStack, v S′′ = S′, (pc + 1, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = starg i evalStack = evalStack′, v adr = argAdr[i]
H′ = heapUpdate(H, adr, v) S′′ = S′, (pc + 1, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H′, S′′, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = br target S

′′ = S
′
, (target, locAdr, argAdr, evalStack

′
, mref)

(H, S, E)→ (H, S
′′

, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref) instr = brtrue target
evalStack = evalStack′, v v == 0 S′′ = S′, (pc + 1, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E)

S = S′, (pc, locAdr, argAdr, evalStack, mref) instr = brtrue target
evalStack = evalStack′, v v! = 0 S′′ = S′, (target, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E)

Fig. 8. Evaluation rules for normal execution (Part 1)
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S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = call T :: M argTypes(T :: M) =

−→
A1..n

evalStack = evalStack′,−→v 1..n argAdr′ = −→a 1..n (with ai fresh)
H′ = heapUpdate(H,−→a 1..n,−→v 1..n) locTypes(T :: M) =

−→
L 1..m

locAdr′ =
−→
l 1..m (with li fresh) H′′ = heapUpdate(H′ ,

−→
l 1..m, defV al(

−→
L 1..m))

S′′ = S′, (pc, locAdr, argAdr, evalStack′, mref), (0, locAdr′, argAdr′, [], T :: M)

(H, S, E)→ (H′′, S′′, E)

S = S
′
, (pc2, locAdr2, argAdr2, evalStack2, mref2), (pc, locAdr, argAdr, evalStack, mref)

instr = ret
retType(mref) = void S′′ = S′, (pc2 + 1, locAdr2, argAdr2, evalStack2, mref2)

(H, S, E)→ (H, S′′, E)

S = S′, (pc2, locAdr2, argAdr2, evalStack2, mref2), (pc, locAdr, argAdr, evalStack, mref)
instr = ret retType(mref) �= void evalStack = evalStack′, v

evalStack2′ = evalStack2, v S′′ = S′, (pc2 + 1, locAdr2, argAdr2, evalStack2′ , mref2)

(H, S, E)→ (H, S′′, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = throw evalStack = evalStack′, val
E′ = (val, 0) cal �= null S′′ = S′, (pc, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E′)

Fig. 9. Evaluation rules for normal execution (Part 2)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
E = (val, n) n = #excHa(mref) E′ = (val, 0)

(H, S, E)→ (H, S′, E′)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
E = (val, n) n < #excHa(mref) excHa(mref)[n] = (from, to, type, cfrom, cto)

from > pc ∨ pc ≥ to ∨ actualTypeOf(val) �< type E′ = (val, n + 1)

(H, S, E)→ (H, S, E′)

S = S′, (pc, locAdr, argAdr, evalStack, mref)
E = (val, n) n < #excHa(mref) excHa(mref)[n] = (from, to, type, cfrom, cto)

from ≤ pc < to actualTypeOf(val) < type
E′ = (null, 0) evalStack′ = val S′′ = S′, (cfrom, locAdr, argAdr, evalStack′, mref)

(H, S, E)→ (H, S′′, E′)

Fig. 10. Evaluation rules for exception handling

S = S′, (pc, locAdr, argAdr, evalStack, mref)
instr = callvirt T :: M isV irtual(T :: M) = true

argTypes(T :: M) = T,
−→
A1..n evalStack = evalStack′, t,−→v 1..n

−−→args = t,−→v 1..n

T ′ :: M = lookupMethod(actualTypeOf(t), T :: M) argAdr′ = −→a 0..n (with ai fresh)
H′ = heapUpdate(H,−→a 1..n,−−→args) locTypes(T ′ :: M) =

−→
L 1..m

locAdr′ =
−→
l 1..m (with li fresh) H′′ = heapUpdate(H′ ,

−→
l 1..m, defV al(

−→
L 1..m))

S′′ = S′, (pc, locAdr, argAdr, evalStack′, mref), (0, locAdr′, argAdr′, [], T ′ :: M)

(H, S, E)→ (H′′, S′′, E)

Fig. 11. Evaluation rule for virtual calls
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De Nicola, Rocco 19
Derrick, John 78
Dubrovin, Jori 96

Genaim, Samir 2
Gruler, Alexander 113
Gunter, Carl A. 39

Heljanko, Keijo 96
Hou, Jennifer 150
Hubert, Laurent 132
Hugues, Jérôme 185
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